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Abstract

Matrix and Tensor Completion are key techniques, e.g., in recommendation systems.
We build on a recently developed matrix-completion method, BOMIC, which performs
nuclear norm regularized matrix completion jointly with trainable user and item biases:
Each predictor is a sum of a purely regression based model composed of user and item
biases, and a low rank model free of any behavior that could be seen as the effect of user
or item biases.
In this thesis, we extend this idea to 3-tensors. We propose the tensor completion method
BOTIC where each predictor again consists of a sum of different bias terms. In addition
to first degree bias terms for each of the dimensions and second degree terms consisting
of tensors exhibiting (low rank) dependence only on two of the indices our model includes
a low rank "pure" tensor free of effects which could be modelled by other terms.
We look at different ways to regularize this residual order 3 tensor, such that a low rank
tensor capturing only the most obvious of the purely order 3 phenomena in the data can
be obtained.
Since we believe many tensor completion problems involve mostly pairwise interactions,
with purely three-way interactions playing a relatively minor role, our model should be
better suited to model realistic low rank phenomena behind naturally occurring low rank
tensors.
Finally, BOTIC is compared against both pure tensor-based and matrix-based baselines
in experiments on synthetic data.
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1 Introduction and Overview

1.1 Introduction

Tensor completion is the task of imputing values in tensors that are missing, unobserved,
or corrupted. Many modern tasks and datasets are highly complex and often exhibit high
dimensionality. Understanding the underlying structure of the potentially huge amounts
of data is crucial in benefiting from the data and allows tackling important data-driven
applications. Often, the collected data is incomplete, only partial observations have been
made or some measurements have gone missing.
When dealing with this complex incomplete data, tensor completion as well as the closely
related fields of tensor decomposition and tensor approximation are key techniques that
enable many insights to be gained from collected data and aid prediction of the currently
unknown while keeping the prediction highly interpretable.
A special case of tensor completion, matrix completion, has been studied extensively and
is well understood. Advanced methods and frameworks like Orthogonal Inductive Matrix
Completion OMIC [1] have been developed and analyzed. Matrix completion methods
have already been used in many diverse applications.
Although many of the popular matrix completion methods can be indirectly used to
complete tensors, e.g. by working with slices of tensors or unfolding tensors into big
matrices, the inherent multidimensional structure present in the high dimensional data
can get lost and additional redundancies can be included thus weakening interpretability
and understanding. In addition to matrix-based tensor completion tensor-based tensor
completion has attracted increasing research interest.
Tensor based methods can be used everywhere where data can be represented in multi-
dimensional arrays, e.g. when the data depends on several categorical factors.
Applications include recommender systems, data mining, graph analysis,
computer vision, photo and video reconstruction, signal processing, psychometrics,
chemometrics and neuroscience [2], [3].
Throughout this thesis we will take a closer look at tensor completion in the context
of recommender systems where we are interested in learning how much a specific user
likes a set of items, including items not yet seen by the user. We can use this knowledge
to recommend new items and aid user guided searches by filtering and sorting possible
matches with respect to their unique preferences. Specific applications include recom-
mendations for movies, music, products or other content, i.e. in the context of social
media.
All possible interactions between a set of users and a set of items can be represented by a
matrix M where Mij is a numerical value representing the affinity of user i to the item j,
i.e. how user i would rate item j, e.g. on a scale from 1 to 5. Each row Mi· represents a
user i and contains all ratings of that user i on all items. Each column M·j on the other
hand represents an item j and contains all its ratings from all users.
Not every entry ofM is known since not every user has seen and rated every item there is,
often each user only rated a handful of items leading to the case where only a (potentially
very small) portion of the needed data is available. Our goal is to fill in values for the
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missing entries, since it would be beneficial to know how a user would rate an item they
haven’t already seen.
It is commonly believed that the preferences of a user can be largely attributed to a small
set of influences. For example, the affinity of a user to an item strongly depends on their
affinity to similar items and the ratings of users with similar taste on the specific item.
This justifies the assumption that the data has a low rank which can be used to our
advantage and allows predictions of unobserved data points.
In Tensor Completion we consider data that is influenced by more than two underlying
factors. For example, one could consider a recommender system model that also describes
how user preferences change over time. If a continuous time frame is divided into distinct
time intervals, the preferences can be represented by a tensor M.
This time Mijk indicates how much the user i likes item j in the time interval k.
Again the data is only observed very sparesly and M will be a tensor of low rank.

1.2 Contribution

The goal of this thesis is to develop the comprehensive and interpretable tensor-based
tensor completion framework OTIC closely build on the recently developed matrix-
completion framework OMIC.
BOMIC, a special case of OMIC, models matrices as a sum of purely regression based
terms including user and item biases and a low rank model free of any user or item biases.
This enables great interpretability of the results.
In this thesis, we extend this idea to 3-tensors. We develop and analyze a new tensor
completion method we name BOTIC.
While first order and second order terms are still an important part of our new model, we
also include a higher order term capturing the purely order three phenomena in the data
which can not be modelled by other terms. The first oder terms still consist of biases for
each of the dimensions while second order terms consist of tensors exhibiting (low rank)
dependence only on two of the indices.
We propose to use the overlap nuclear norm to dynamically select a tensor with a low
Tucker rank. Thus, most of the representational capacity of our model will come from
the matrix completion terms with an additional low rank tensor capturing the most
important higher order interactions.
We will show that this addition will improve the performance of BOMIC, demonstrating
that higher order interactions should not be neglected by tensor completion methods and
enabling future tensor completion methods based on OTIC.
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1.3 Notation

To better visualize the difference between scalars, vectors, matrices and tensors we con-
sistently denote

scalars with small letters (e.g. x ∈ R),

vectors with bold small letters (e.g. x ∈ Rm),

matrices with big letters (e.g. X ∈ Rm×n),

tensors with big bold letters (e.g. X ∈ Rm1×···×md).

1.4 Outline

This thesis will be structured as follows:

Initially, in Chapter 2 the mathematical foundations needed for this thesis are laid, in-
cluding a formal introduction to tensors and the task of Tensor Completion.
Chapter 3 summarizes related methods in Matrix and Tensor Completion. Most notably
BOMIC and the OMIC framework will be described in detail.
In Chapter 4 we will be developing the OTIC framework and taking a thorough look
at the proposed algorithm, BOTIC. Regularization is discussed and the convergence is
proven.
Next, the capabilities of the algorithm are demonstrated on synthetic data and real
world data. Matrix based and Tensor based baselines are evaluated and compared to
our method. The experiments are described in Chapter 5 including a discussion of the
results.
Finally, in Chapter 6, we will evaluate the performance of the proposed method and
discuss its potential by giving an outlook on further work that could be done to elevate
the capabilities of OTIC.
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2 Background

In this chapter we will be introducing the mathematical concepts that are relevant for
our tensor completion framework and our proposed algorithm BOTIC. We will start with
an introduction to tensors, explore the singular value decomposition and take a look at
tensor decompositions. Next we will formally introduce the task of Matrix and Tensor
Completion and finally we will briefly define subgradients.

2.1 Tensors

An element X ∈ Rm1×···×md is called a real valued tensor of order d.
Tensors can thus be seen as a multidimensional generalization of vectors and matrices,
since all tensors of order 2 are also matrices and all tensors of order 1 are also vectors.

For tensors A,B ∈ Rm1×···×md an inner product can be defined as

〈A,B〉 :=

m1∑
i1

m2∑
i2

· · ·
md∑
id

Ai1i2...idBi1i2···id (1)

inducing the generalization of the Frobenius-norm through

‖A‖2F :=
√
〈A,A〉

making Rm1×···×md a Banach space, i.e. a complete normed vector space.

For two vectors u1 and u2 we denote the outer product with u1 ◦ u2 := u1uT2
such that (u1 ◦ u2)i1i2 = (u1)i1(u2)i2 .
We generalize this concept to tensors and define:

(u(1) ◦ u(2) ◦ · · · ◦ u(d))i1i2...id = u(1)
i1
u(2)
i2
· · ·u(d)

id

In the following section X will always denote a tensor of order d, i.e. X ∈ Rm1×···×md .
We now want to define an operation similar to the matrix product between a tensor and
a matrix. First note that for two matrices A,B of appropiate sizes the rows of the matrix
product A ·B are linear combinations of the rows (’mode-1 vectors’) of B. Likewise the
columns of B ·AT are linear combinations of the columns (’mode-2 vectors’) of B.
We can generalize the concept of linear combinations of ’mode-n vectors’ to tensors.

Definition 2.1 (n-mode product).
Let X ∈ Rm1×···×md and U ∈ Rkn×mn.
We define X×n U ∈ Rm1×m2×···×mn−1×kn×mn+1×···×md as
(X×n U)i1i2...in−1jnin+1...id :=

∑
in

Xi1i2...in−1inin+1...idUjnin

Note that for matrices A,B, B ×1 A = A ·B and B ×2 A = B ·AT .
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The notion of a tensor rank similar to a matrix rank is ambiguous, there are two common
ways to capture the concept of low-rank tensors:
The multilinear n-rank (Tucker rank) and the (CP-)rank.

First, by fixing all but one of the indices of a tensor we get the n-mode vectors:

Definition 2.2.
Xi1,i2,...,in−1, · ,in+1,...,id ∈ Rmn is called a n-mode vector of R.

Now the n-rank is defined as the dimension of the vector space spanned by the n-mode
vectors, or more formally:

Definition 2.3.
The matrix unfolding X(n) ∈ Rmn×(mn+1mn+2···mdm1···mn−1) is defined as
(X(n))inind(i1,...,id) = (X)i1i2...id , i.e. contains the element (X)i1i2...id
at index (in, ind(i1, . . . in−1in+1 . . . , id)) where ind is a fixed indexing of
{1, . . . ,m1} × · · · × {1, . . . ,mn−1} × {1, . . . ,mn+1} × · · · × {1, . . . ,md}.
For notational simplicity we also define the operator Pn(X) := X(n).

Definition 2.4 (n-rank).
We set rankn(X) = rank(X(n)).

On the other hand, one could define the rank of a tensor by the minimal number of
rank−1 tensors needed to yield the tensor in a linear combination:

Definition 2.5.
X has a rank of 1 iff it is the outer product of d vectors u(1),u(2), . . . ,u(d),
i.e. X = u(1) ◦ u(2) ◦ · · · ◦ u(d).

Definition 2.6 (rank).
We set rank(X) = min r s.t.

∑r
k=1 u(r,1) ◦ u(r,2) ◦ · · · ◦ u(r,d) for any set of vectors u(r,j).

Unfortunatly, finding rank(X) of an arbitrary tensor X is np-hard and thus often less
practical than the n-rank [3].

2.2 Singular Value Decomposition

In data-driven tasks the singular value decomposition, SVD for short, is one of the most
important mathematical tools building the foundation for many modern systems and
applications. The SVD is a matrix decomposition that exists for every matrix. It can
be used to compute optimal matrix approximations and to eliminate noise in low rank
matrices. Moreover, it forms the basis of the influential Principal Component Analysis
(PCA) that can be used to find the most statistically descriptive factors and dominant
patterns in the data [4].

Mathematically, the SVD of a matrix Z ∈ Rm×n is given by
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Z = U ·D · V T

where U ∈ Rm×m and V ∈ Rn×n are orthogonal, i.e. whose columns form an orthonor-
mal system. D ∈ Rm×n is a diagonal matrix with non-negative entries, such that
Dii ≥ Djj for i ≥ j. σi := Dii is called the i-th singular value of Z and
U·,i (V·,i) is called the i-th left (right) singular vector of Z.

One of the defining properties of the SVD is the ability to provide optimal low rank
matrix approximations.

Theorem 2.7 (Eckart-Young [5]).
The best rank-k approximation w.r.t. the Frobenius norm

min
Z̃∈Rm×n

∥∥∥Z − Z̃∥∥∥2

F

s.t. rank(Z̃) = k

is given by the rank-k truncation of the SVD of Z

Ẑ = UD̂V T

where Z = UDV T is the SVD of Z and D̂ii = Dii for i ≤ k, D̂ii = 0 else.

On a site note we define two concepts closely related to the SVD that will be used later.
In the following, let Z ∈ Rm×n and denote its SVD with Z = UDV T . First, we can use
the singular values to define the nuclear norm, a tight convex relaxation of the matrix
rank.

Definition 2.8.
Let ‖Z‖∗ :=

∑min(n,m)
i=1 σi.

Finally we define the soft-treshold SVD which arises naturally in the context of Matrix
Completion.

Definition 2.9.
We set Sλ(Z) := UDλV

T where Dλ is a diagonal matrix
with (Dλ)ii = (Dii − λ)+ = max(Dii − λ, 0).

2.3 Tensor Decompositions

There are several types of tensor decompositions preserving properties of the SVD for
matrices. The goal of Tensor Decomposition is to give insights into the patterns found in
the tensors. Choosing only the most important patterns found in a decomposition will
result in low rank approximations of tensors. Unfortunately an optimal tensor approxi-
mation w.r.t a given fixed n-rank or rank can not be found as elegantly as in the matrix
case. We will take a closer look at two decompositions, the CP Decomposition and the

6



Tucker Decomposition / HOSVD.
A more complete overview on similar methods can be found in [3].
We also briefly note that there are other promising tensor decompositions and approx-
imations, e.g. based on the t-SVD [6] or the tensor train decomposition [7] that try to
capture a different kind of tensor rank.

2.3.1 CP Decomposition

One way to approach a generalization of the SVD is to note that the SVD of Z ∈ Rm1×m2

can be rewritten as:

Z = UDV T =

min(n,m)∑
k=1

σkU·,kV
T
·,k =

min(n,m)∑
k=1

σkU·,k ◦ V·,k

Each summand has the interpretation of a distinct influence or mechanism that con-
tributed to Z where σk denotes the statistical importance of the factor.
The CP Decomposition generalizes the above to tensors. Historically it is also called the
canonical decomposition (CANDECOMP) or parallel factors model (PARAFAC).

Definition 2.10 (CP).
Let Z ∈ Rm1×···×md be a d-order tensor.
A CP of Z is a decomposition Z =

∑R
r=1 σru

(1)
r ◦ u(2)

r ◦ · · · ◦ u(d)
r

with minimal R where
∥∥∥u(n)

r

∥∥∥
2

= 1.
Depending on the application, some orthogonality constraints may apply.

Note that unlike the SVD, the CP is not unique.
A CP of Z can only be found numerically.
Given a CP of Z, we are also interested in the truncated CP, a fixed rank approximation

Ẑ =

k∑
r=1

σru(1)
r ◦ u(2)

r ◦ · · · ◦ u(d)
r

with rank(Ẑ) = k < R.
The problem of a ’best truncated CP’ which minimizes

∥∥∥Ẑ− Z
∥∥∥
F
is studied in [8].

Without constraints a best truncated CP for a fixed rank may not even exist, altough
by imposing orthogonality constraints on u(n)

i the existence can be guaranteed and a
solution can be found numerically.

2.3.2 Tucker Decomposition

An other way to approach a generalization of the SVD is to use the higher order SVD
(HOSVD) [9] which computes a special case of the Tucker Decomposition. This special
decomposition will also be called the HOSVD to avoid confusion.
First note that the SVD of Z ∈ Rm1×m2 can be rewritten as:
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Z = UDV T = D ×1 U ×2 V

The HOSVD generalizes the concept of applying matrix products to a ’core matrix’.
Instead tensor-matrix products are used.

Definition 2.11 (HOSVD).
Let Z ∈ Rm1×···×md be a d-order tensor.
The HOSVD of Z is given by the Tucker decomposition Z = Σ×1U

(1)×2U
(2) · · ·×dU (d)

where additionally U (k) ∈ Rmk×mk are orthogonal matrices and Σ ∈ Rm1×···×md

is all-orthogonal, i.e. all subtensors Σin=α (where one index is fixed) are orthogonal,
i.e. 〈Σin=α,Σin=β〉 = 0 for α 6= β.

Note that we do not restrict ourselves to pseudodiagonal Σ, i.e. where only Σkk...k are
nonzero because then too few degrees of freedom would remain and not every tensor in
Rm1×···×md could be represented (Since a pseudodiagonal Σ containsm = min(m1, . . . ,md)
non-zero entries this decomposition would only havem(1−d(m+1)/2+

∑d
i=1mi) degrees

of freedom which for d ≥ 3 is less than the Πd
i=1mi independent entries of the original

tensor [9]).
This unique decomposition has a lot of similar properties to the matrix SVD and is also
easily computable because the n-mode-singular vectors U (n) of Z are just the left singular
vectors of Z(n), hence we only have to compute d matrix SVDs.
Unfortunately unlike the matrix SVD where Theorem 2.7 holds, for tensors in general
the best approximation w.r.t a fixed Tucker rank [k1, . . . , kd]

min
Z̃∈Rm1×···×md

∥∥∥Z− Z̃
∥∥∥2

F
(2)

s.t. rankn(Z̃) = kn

is not necessarily given by a truncated HOSVD where the respective values in Σ are set
to zero that correspond to the n-mode singular vectors U (n)

·i with i > kn.
However the resulting approximation is very close to the real optimal solution and tight
upper bounds on the resulting error can be shown.
Additionally, the Higher Order Orthogonal Iteration (HOOI) [10] can be used to itera-
tively improve the result obtained by the HOSVD. It can be shown that in most cases
HOOI converges to an optimal solution of (2). HOOI is based on an alternating opti-
mization of the factors U (k) by fixing all but one factor at a time.
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Algorithm HOOI
INPUT: Z, initial factors U (k) for k ∈ {1, . . . , d}
repeat

for i ∈ {1, 2 . . .K} do
Ũ← Z
for j ∈ {1, 2 . . .K} \ {i} do

Ũ← Ũ×j (U (j))T

end for
U (i) ← argminU

∥∥∥Ũ×i UT∥∥∥ s.t. U is orthogonal.
end for

until Convergence

Note that
∥∥∥Ũ×i UT∥∥∥ under these constraints is minimized by the left singular vectors

of Pi(Ũ) and can be obtained by calculating a matrix SVD [10].

2.4 Matrix Completion

Let R ∈ Rm×n be a ground truth matrix whose entries are partially observed. The set of
known entries is given by Ω ⊆ {1, . . . ,m} × {1, . . . , n} and the projection onto this set,
setting all other values to zero, is denoted as PΩ. The values that are not observed are
denoted by Ω⊥ = {1, . . . ,m} × {1, . . . , n} \ Ω. Throughout the thesis we will write RΩ

as a shorthand for PΩ(R), the observed entries of R.
The goal of matrix completion is to find a low rank matrix which also explains the
observations RΩ, i.e. while having a small loss (e.g. quadratic loss).
Using a simple model, a solution can be obtained through the solution of the following
optimization problem:

min
Z∈Rm×n

rank(Z) (3)

s.t. ‖RΩ − PΩ(Z))‖2F ≤ δ

If we approximate rank(Z) with the nuclear norm ‖Z‖∗ the Lagrange form of (3) is a
convex optimization problem

min
Z∈Rm×n

1

2
‖RΩ − PΩ(Z))‖2F + λ‖Z‖∗ (4)

and thus has a unique solution.

2.5 Tensor Completion

Since Tensor Completion has the same goal of imputing missing values our considerations
mostly carry over from Matrix Completion.
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This time let R ∈ Rm1×m2×···×md be a ground truth tensor whose entries are partially
observed. The set of know entries is denoted by Ω ⊆ {1, . . . ,m1}× · · ·×{1, . . . ,md}, the
projection onto them by PΩ, RΩ := PΩ(R).
Again we want to find a low rank tensor which explains our observations well.
For the sake of simplicity we will mainly focus on the case where d = 3, i.e. we observe
data with 3 dimensions, capturing the interactions of three factors. Higher order Tensor
Completion (d > 3) can however be solved with the same methods.
A basic model, similar to (3), is given by

min
Z∈Rm1×···×md

r(Z) (5)

s.t. ‖RΩ − PΩ(Z)‖2F ≤ δ

where r(Z) can either be rank(Z) or the sum of the n-ranks (
∑d

k=1 rankk(Z)). When
we choose a convex regularizer R (e.g. R(Z) =

∑d
k=1‖Pk(Z)‖∗) we can again make the

problem convex:

min
Z∈Rm1×···×md

1

2
‖R− Z‖2F + λR(Z) (6)

2.6 Subgradients

For later proofs we will need the subgradient, a handy tool for the optimization of convex
functions. With the help of subgradients a simple optimality criterion can be given.

Let f : Rn → R, x 7→ f(x) be a real valued function.

Definition 2.12 (Subgradient).
g is a subgradient of f at x if f(y) ≥ f(x) + g(x)T (y − x) for all y ∈ Rn.

Definition 2.13 (Subdifferential).
∂f([x]) = ∂f(x) = {g|g is subgradient of f at x} is called the subdifferential of f at x.

The subdifferential shares basic properties with the differential, e.g.

Remark 2.14 (Linearity).
∂(αf(x) + h(x)) = {αg1 + g2|g1 ∈ ∂f(x), g2 ∈ ∂h(x)} = α∂f(x) + ∂h(x).

Subdifferentials are especially suited to describe convex functions, as can be seen by:

Proposition 2.15.
If f is convex ∂f(x) is nonempty for each x ∈ Rn
and ∂f(x) = {∇f(x)} if f is differentiable at x ∈ Rn.

Most importantly we obtain the following optimality criterion for convex functions that
follows directly from Definition 21

Lemma 2.16.
If f is convex 0 ∈ ∂f(x̂)⇔ f(x̂) ≤ f(x) for all x ∈ Rn.
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3 Related Work

In this chapter we will review relevant works from the field of Matrix Completion and
Tensor Completion. We will start with Matrix Completion methods including Soft-
Impute and go into detail about OMIC and BOMIC. The chapter ends with a survey of
current Tensor Completion models and methods.

3.1 Soft Impute

Since the problem (4) is convex it can be solved, for example, with (Sub-)Gradient
Descent [11]. However a more elegant solution is given by the algorithm Soft-Impute [12]
which will be explained below. Some concepts will still be relevant in our algorithm later
on.

As a first step we consider the fully known case, i.e. Ω = {1, . . . ,m} × {1, . . . , n}.
First note that (3) simplifies to

min
Z∈Rm×n

rank(Z) (7)

s.t. ‖R− Z‖2F ≤ δ

whose optimal solution can be found with a truncated SVD of R (see Theorem 2.7).
In the fully known case The nuclear norm regularized problem (4) simplifies to:

min
Z∈Rm×n

1

2
‖R− Z‖2F + λ‖Z‖∗ (8)

Proof A.1 in [12] shows that (8) can be solved with the soft-threshhold SVD Sλ(R)
(see Definition 2.9).

Finally, based on the above, we find a general solution to (4) including the case
Ω ( {1, . . . ,m} × {1, . . . , n} with Soft-Impute [12]

Algorithm SOFT-Impute
INPUT: λi, RΩ, ε

Initialize Zold, Zold ← 0
for i ∈ {1, 2 . . .K} do

repeat
Zold ← Znew

Znew ← Sλi(RΩ(X)− PΩ⊥(Zold))

until ‖Z
old−Znew‖

F

‖Zold‖
F

< ε

end for

11



where different values for the regularization parameter λ can be tested to select the best
one, e.g. using cross validation.

3.2 Orthogonal Inductive Matrix Completion

The model used in (4) can be improved with more sophisticated approaches like the re-
cently developedOrthogonal Inductive Matrix Completion (OMIC) [1]. Its more complexe
model allows for greater interpretability and the potential to incorporate side information
to aid the prediction. In the context of recommender systems this side information could
for example be additional information about the items, e.g. which genre a movie or song
is in. OMIC imputes the missing values by finding a solution to

min
M

1

2

∥∥∥∥∥∥RΩ − PΩ(

K,L∑
k=1,l=1

X(k)M (k,l)(Y (l))T ))

∥∥∥∥∥∥
2

F

+

K∑
k=1

L∑
l=1

λk,l

∥∥∥M (k,l)
∥∥∥
∗

(9)

where the auxillary matrices X(k) ∈ Rm×d
(k)
1 and Y (l) ∈ Rn×d

(l)
2 form orthonormal bases

of their respective spaces, i.e. (X
(k1)
·, j1 )T (X

(k2)
·, j2 ) = δk1, k2 δj1, j2 and spank, j(X

(k)
·, j ) = Rn

(likewise (Y
(l1)
·, j1 )T (Y

(l2)
·, j2 ) = δl1, l2 δj1, j2 and spank, j(Y

(l)
·, j ) = Rm).

This ensures the orthogonality of the subspaces {X(k)M (k,l)(Y (l))T |M ∈ Rd
(k)
1 ×d

(l)
2 }

and allows R to have a unique representation as R =
∑K,L

k=1,l=1X
(k)R(k,l)(Y (l))T .

The λk,l can be searched for by cross validation. Prior knowledge can reduce the com-
putational costs by tying parameters with each other and setting others to zero.

Moreover, the noteworthy special case BOMIC allows for joint training of regression
based bias terms and a low rank bias-free matrix completion term.
In BOMIC we set X(1) = 1√

m
1T , Y (1) = 1√

n
1T and X(2) and Y (2) to their respective

orthogonal complements. The resulting model is equivalent to optimizing

min
c,u,m,S

1

2

∥∥∥∥RΩ − PΩ(c11T + u1T + 1mT + S)

∥∥∥∥2

F

+ (10)

λ1|c|+ λ2‖u‖2 + λ3‖m‖2 + λ4‖S‖∗

under orthogonality constraints (u, m, S·, j and Si, · sum up to zero for all i, j).
The prediction fi,j can thus be written as a sum of a zero order term (constant), first
order terms (individual biases) and a second order term:

fi,j = c+ ui + mj + Si,j

12



3.3 Tensor Completion

There are many different approaches to Tensor Completion, a summary of recent meth-
ods can be found in [2]. Most approaches fall into two categories - there are methods
which are based on tensor decompositions and methods that find fitting tensors directly,
regularized by different regularizations.

First, Tensor Decomposition methods can be extended to also handle missing data. One
common way to solve the resulting optimization problems is to use repeated Imputation,
very similar to Soft-Impute. The decomposition is used indirectly by repeatedly alter-
nating between imputation of the known entries and approximation of the current iterate
until convergence is reached.
There are also more direct optimization approaches, simply ignoring the missing values.
For example there are several methods based on the CP decomposition (Section 2.3.1),
including the gradient-based CP-WOPT [13] and the Bayesian approach FBCP [14].
In [15] a method based on the Tucker decomposition (similar to Section 2.3.2) was used
to find tensors with low n-rank.

An other approach is to solve optimization problems similar to (6) directly, often using
some generalization of the nuclear norm. A popular generalization is the overlap nuclear
norm which is a sum of the nuclear norms of the matrix unfoldings

∑d
k=1 γk‖Pk(bM)‖∗

[16]. Solutions to the resulting problem can be found using Block Cordinate Descent [17],
the Alternating Direction Method of Multipliers (ADMM) [18] or the Frank-Wolfe Algo-
rithm [19]. [18] also explores the latent nuclear norm which instead of finding a tensor
that exhibits a low rank in each dimension, searches for tensors that can be represented
as a sum of several tensors each having a low rank in only one dimension.
As mentioned in Chapter 2.3, we briefly note that there also methods based on the Tensor
Train Decomposition [20] and the tSVD [21].
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4 Orthogonal Inductive Tensor Completion

In this section we will present the new tensor completion framework OTIC which extends
OMIC [1] to tensors. An algorithmic solution to the general model is developed, putting
a special focus on the proposed algorithm BOTIC. Finally, different regularizations and
warm starts are discussed.

4.1 The Model

We now introduce a generalization of OMIC that is called Orthogonal Inductive Tensor
Completion (OTIC) which for d = 3 is given by

min
M
L(RΩ,M,Λ) with (11)

L(RΩ,M,Λ) :=
1

2

∥∥∥∥∥∥RΩ − PΩ(

K1,K2,K3∑
k1,k2,k3=1

M(k1,k2,k3) ×1 X
(k1) ×2 Y

(k2) ×3 Z
(k3)))

∥∥∥∥∥∥
2

F

+

K1,K2,K3∑
k1,k2,k3=1

λk1k2k3R(M(k1,k2,k3))

where R is a convex regularizer, Λ ∈ RK1×K2×K3 ,Λk1k2k3 = λk1k2,k3 are the
regularization parameters and M(k1,k2,k3) = M×1 (X(k1))T ×2 (Y (k2))T ×3 (Z(k3))T .
Further explanations are given in the next section.

For now we will focus on the special case BOTIC (an extension of BOMIC ) by setting
X(1) = 1√

m1
1T , Y (1) = 1√

m2
1T , Z(1) = 1√

m3
1T and X(2), Y (2), Z(2) to their respective

orthogonal complements. This allows for the joint training of individual biases, matrix
completion terms and an aditional tensor completion term modelling pure order three
interactions between all dimensions.
We will use a regularizer that is an extension of the nuclear norm. This means
R(Z) = ‖Z‖∗ for Z ∈ Rk1×k2×k3 where k1 = 1, k2 = 1 or k3 = 1, i.e. when Z can be be
understood as a matrix, vector or scalar respectively.
In that case the model is equivalent to optimizing a prediction function

fi,j,k = c+ b1
i + b2

j + b3
k + S1

i,j + S2
j,k + S3

i,k + Ti,j,k (12)

under orthogonality constraints (bl, Sl·, j , S
l
i, ·, T·,j,k, Ti,·,k and Ti,j,· sum up to zero

for all l, i, j, k) and w.r.t an regularizer that is given by

λ̄0|c|+
3∑
l=1

λ̄1,l

∥∥∥bl∥∥∥
2

+
3∑
l=1

λ̄2,l‖S‖∗ + λ̄3R(t).
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In addition to first order terms (b) and second order terms (S) this model also takes a
third order term (T) into account.
To reduce the need for cross validation and thus computation time we will set the reg-
ularization for zeroth and first order terms zero and tie the second order regularization
parameters together,
i.e. λ̄0 = λ̄11 = λ̄12 = λ̄13 (= λ111 = λ211 = λ121 = λ112) = 0, λ̄2i = ciλ1 and
λ2 = λ̄3 (= λ222) where ci is a universal constant depending on the size of the ground
truth tensor.
As a result only two regularization parameters have to be choosen, λ1 and λ2.

4.2 The Algorithm

The first step to a solution of (11) is to find a solution for the fully known case were all
entries of a tensor R ∈ Rm1×m2×m3 are observed.
Note that the subspaces

Sk1,k2,k3 := {M×1 X
k1 ×2 Y

k2 ×3 Z
k3 |M ∈ Rd

k1
1 ×d

k2
2 ×d

k3
3 }

are orthogonal w.r.t the inner product defined in (1).
The projection onto those subspaces is given by

Πk1k2k3(R) := ΠSk1,k2,k3 (R) =
[
R×1 X

(k1) ×2 Y
(k2) ×3 Z

(k3)
]
×1(X(k1))T×2(Y (k2))T×3(Z(k3))T

where

Pk1k2k3(R) := R×1 X
(k1) ×2 Y

(k2) ×3 Z
(k3) ∈ Rd

k1
1 ×d

k2
2 ×d

k3
3

is the unique representation of Πk1k2k3(R) w.r.t. the base vectors X(k1)
· j1 , Y (k2)

· j2 and Z(k3)
· j3 :

Πk1k2k3(R) =

d
k1
1 , d

k2
2 , d

k3
3∑

j1, j2, j3=1

Pk1k2k3(R)(M)j1j2j3 X
(k1)
· j1 ◦ Y

(k2)
· j2 ◦ Z

(k3)
· j3

The problem (11) can be rewritten as:

min
M∈Rm1×m2×m3

1

2

∥∥∥∥∥∥R−
K1,K2,K3∑
k1,k2,k3=1

Πk1k2k3(M)

∥∥∥∥∥∥
2

F

+

K1,K2,K3∑
k1,k2,k3=1

λk1k2k3R(Pk1k2k3(M)) (13)

Because the Sk1,k2,k3 are mutually orthogonal we can uniquely decompose
R =

∑K1,K2,K3

k1,k2,k3=1 Πk1k2k3(R) and thus find an optimal solution by solving
K1 ·K2 ·K3 independent optimization problems of the form
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min
M∈Rm1×m2×m3

1

2

∥∥∥Πk1k2k3(R)−Πk1k2k3(M)
∥∥∥2

F
+ λk1k2k3R(Π(k1k2k3)(M))

= min
M∈Rd

k1
1 ×d

k2
2 ×d

k3
3

1

2

∥∥∥Πk1k2k3(R)−M
∥∥∥2

F
+ λk1k2k3R(M). (14)

Denote the optimal solution to (14) with Sλk1k2k3 (Πk1k2k3(R))
and the optimal solution to (13) with SΛ(R).
Note that:

SΛ(M) =

K1,K2,K3∑
k1,k2,k3=1

Sλk1k2k3 (M×1 (Xk1)T ×2 (Y k2)T ×3 (Zk3)T )×1 X
k1 ×2 Y

k2 ×3 Z
k3

(15)

How to find the solution Sλk1k2k3 (Π(k1k2k3)(R)) to (14) will be described in Section 4.4.
Building on the solution of the fully known case (13), a solution to the partially observed
case (Ω ( {1, . . . ,m1} × · · · × {1, . . . ,md}) can be found by first setting all unobserved
values to zero (or any other constant value) and then repeatedly alternating between
imputation of the observed values and application of the solution of the fully known
case, i.e.

M0 = 0

Mi+1 = SΛ(RΩ + PΩ⊥(Mi)).

Proposition 4.1.
If R is the overlap nuclear norm, i.e. R(M) =

∑d
k=1 γk‖Pk(bM)‖∗,

the sequence Mi defined as above converges to an optimal solution M∞ of (11).

Proposition 4.2 (Worst Case Asymptotic Convergence).
In this case, for a fixed Λ we get the following bound:

L(Mi)− L(M∞) ≤
∥∥M0 −M∞

∥∥2

F

i+ 1

These propositions are generalizations of similiar theorems that also hold for OMIC.
A proof of Proposition 4.1 can be found in Section 7.2 while the proof of Proposition 4.2
is exactly the same as the proof of the similar Theorem 2.2 in [1] for the matrix case.

Using Proposition 4.1 a solution to (11) can be computed using the following pseudocode
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Algorithm OTIC (simple)
INPUT: V, RΩ, ε
OUTPUT: MΛ and Pk1k2k3(MΛ) for all k1, k2, k3 and Λ ∈ V
Initialize Mnew ← 0
for Λ ∈ V do

repeat
Mold ←Mnew

Mnew ← SΛ(RΩ(X) + PΩ⊥(Mold))

until ‖M
old−Mnew‖

F

‖Mold‖
F

< ε

MΛ ←Mnew

end for

where a solution will be calculated for all Λ ∈ V.
Each subproblem is initialized with the result of the preceding subproblem.
The best solution can be selected using cross validation.
If V is a cross product, i.e. V =×k1,k2,k3

Vk1,k2,k3 where Vk1,k2,k3 is a finte set of all
possible values for λk1k2k3 , the runtime can be further improved by warm starts similar
to [1]. First a set of tensors is computed using Λ = pk1,k2,k3(λ), λ ∈ Vk1,k2,k3 where

(pk1,k2,k3(λ))i1i2i3 :=

{
λ for i1 = k1, i2 = k2, i3 = k3

∞ else

that can be combined later.
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Algorithm OTIC
INPUT: V =×k1,k2,k3

Vk1,k2,k3 , RΩ, ε
OUTPUT: MΛ and Pk1k2k3(MΛ) for all k1, k2, k3 for all Λ ∈ V
for k1 ∈ {1, . . . ,K1} do

for k2 ∈ {1, . . . ,K2} do
for k3 ∈ {1, . . . ,K3} do

Initialize Mnew ← 0
for λ ∈ Vk1,k2,k3 do

repeat
Mold ←Mnew

Mnew ← Spk1k2k3 (λ)(RΩ(X) + PΩ⊥(Mold))

until ‖M
old−Mnew‖

F

‖Mold‖
F

< ε

Mλ
(k1,k2,k3) ←Mnew

end for
end for

end for
end for
for Λ ∈ V do

Initialize Mnew ←
∑K1,K2,K3

k1,k2,k3=1 M
Λk1k2k3
(k1,k2,k3)

repeat
Mold ←Mnew

Mnew ← SΛ(RΩ(X) + PΩ⊥(Mold))

until ‖M
old−Mnew‖

F

‖Mold‖
F

< ε

MΛ ←Mnew

end for

Again remember that for BOTIC (12) only two hyperparameters have to be choosen
and many Λk1k2k3 are set to zero and can thus be ignored because Sλk1,k2,k3 (M) is the
identity for λk1k2k3 = 0.
Since the only auxillary matrices used are the scaled 1 and its ortogonal complement we
can simplify (15) further. Note that M×k 1T has the effect of summing all entries over
the k-th mode of M, effectively reducing the number of dimensions by one. Similarily
M ×k 1 repeats the elements multiple times along the k-th mode, effectively increasing
the number of dimensions by one.

For example, the zeroth order term

C =

[
M×1

1
√
m1

1T ×2
1
√
m2

1T ×3
1
√
m3

1T
]
×1

1
√
m1

1×2
1
√
m2

1×3
1
√
m3

1

can be calculated using

18



Cijk =
1

m1m2m3

K1,K2,K3∑
k1,k2,k3=1

Mk1k2k3 for every i, j, k.

Similar simplifications allow the calculation of SΛ via the following algorithm

Algorithm BOTIC (fully known)
INPUT: Λ = (λ1, λ2), M
OUTPUT: SΛ(M) := MΛ

c← 1
m1m2m3

∑K1,K2,K3

k1,k2,k3=1 Mk1k2k3 . zeroth order
Mk1k2k3 ←Mk1k2k3 − c
b1
k1
← 1

m2m3

∑K2,K3

k2,k3=1 Mk1k2k3 . first order
b2
k2
← 1

m1m2

∑K1,K2

k1,k2=1 Mk1k2k3

b3
k3
← 1

m1m3

∑K1,K3

k1,k3=1 Mk1k2k3

Mk1k2k3 ←Mk1k2k3 − b1
k1
− b2

k2
− b3

k3

S1
k1k2
← 1

m3

∑K3
k3=1 Mk1k2k3 . second order

S2
k2k3
← 1

m1

∑K1
k1=1 Mk1k2k3

S3
k1k3
← 1

m2

∑K2
k2=1 Mk1k2k3

Mk1k2k3 ←Mk1k2k3 − S1
k1k2
− S2

k2k3
− S3

k1k2
T←M . third order
MΛ

k1k2k3
← c+b1

k1
+b2

k2
+b3

k3
+Sλ1(S1)k1k2 +Sλ1(S2)k1k2 +Sλ1(S3)k1k2 +Sλ2(T)k1k2k3

where Sλ1(Sl) is the soft-threshhold SVD of Sl as defined in Definition 2.9.

4.3 Regularization

We will now discuss the regularizer R used in our model (10). This choice heavily
influences the optimal solution Sλ(M) to (14) and thus the quality of our results.
As discussed above Sλk1k2k3 (M) should reduce to the soft-tresholding SVD if M
corresponds to a term of order 2 or less.
Our goal is to only capture the most important of the purely order 3 phenomena in the
data. Hence, a first idea would be to fix the Tucker rank to a low value [r1, r2, r3]
(e.g. [2, 2, 2]) and to simply set Sλ(M) to the solution of

min
M̂

1

2

∥∥∥M− M̂
∥∥∥2

F
(16)

s.t. rank(Pk(M̂)) = rk for k ∈ {1, 2, 3}.

This approximate can be found with HOOI (see Section 2.3.2). As can be seen in
Chapter 5, this simple approach suffices when [r1, r2, r3] is close to the true Tucker rank
of the respective ground truth term Pk1k2k3(R) that has to be approximated. Although,
even in that case, it is prone to overfitting, in particular when the respective component
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only has a small influence in R.
When [r1, r2, r3] can not be estimatated beforehand this approach quickly becomes use-
less, under or overfiting dramatically.
One potential way to combat these flaws is to always overestimate the Tucker rank and
use a simple additional regularizer like λ̂

∥∥∥M̂∥∥∥
F
to force the third order term to tend to

zero. Unfortunatly the solution to (16) stays the same even with this additional penalty
term (until λ̂ gets to big and the all-zero tensor becomes the optimum).

A better way would be to use a regularizer that enables the dynamic selection of the rank
best fit to the data. This can be achieved by using any generalization of the nuclear norm.
We choose a scaled variant of the overlap nuclear normR(M) :=

∑d
k=1 γk‖Pk(M)‖∗ since

it is relatively easy to compute and forces the order three term to have a low rank in
each dimension. With this norm Sλ(R̄) is the optimal solution to

min
M

1

2

∥∥R̄−M
∥∥2

F
+ λ

d∑
k=1

γk‖Pk(M)‖∗. (17)

4.4 The Fully Known Case

In this section, the tensor that has to be approximated is denoted with R̄.
With the choosen regularization we can finally discuss how Sλ(R̄) can be computed.
Although the overlap nuclear norm is a sum of nuclear norms it can’t be solved directly
by applying the soft-threshhold SVD because of the high dependence of the summands.

There are however several methods to solve the optimization problem including ([18],
[17], [19]). We will use a simpler version of the alogrithm from [18] which uses
the Alternating Direction Method of Multipliers (ADMM).

4.4.1 ADMM

ADMM can be used to solve problems of the form

min
x∈Rn,z∈Rm

f(x) + g(x) (18)

s.t. Ax = z

where f and g are convex functions by minimizing the Augemented Lagrangian (AL) of
the problem defined as

Lη(x, z, α) = f(x) + g(x) + αT (Ax− z) +
η

2
‖Ax− z‖2.

Under some mild conditions (which are fulfilled when f is the quadratic loss [22]) a
solution can be found iteratively with the update step
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(xt+1, z1t+ 1) = argminx,z Lη(x, z, α
t)

αt+1 = αt + η(Axt+1 − zt+1).

In ADMM we alternate between the optimizing for x and z

xt+1 = argminx Lη(x, z
t, αt)

z1t+ 1 = argminz Lη(x
t+1, z, αt)

αt+1 = αt + η(Axt+1 − zt+1)

which converges to a solution of (18) for every η > 0. [23]

4.4.2 Tensor Approximation

In this section we will be following the ideas of [18] and adapting them to our setting
and notations. Before ADMM can be applied to (17) we first have to introduce several
auxiallary tensors Z1, . . . ,Zd and rewrite our problem to

min
M,Z1,...,Zd

1

2

∥∥R̄−M
∥∥2

F
+ λ

d∑
k=1

γk‖Pk(Zk)‖∗

s.t. Zi = M for i ∈ {1, . . . , d}

which for λ > 0 is the same as

min
M,Z1,...,Zd

1

2λ

∥∥R̄−M
∥∥2

F
+

d∑
k=1

γk‖Pk(Zk)‖∗ (19)

s.t. Zi = M for i ∈ {1, . . . , d}.

The Augemented Lagrangian is given by

Lη(M, {Zk}dk=1, {Ak}dk=1) =
1

2λ

∥∥R̄−M
∥∥2

F
+

d∑
k=1

γk‖Pk(Zk)‖∗ +

d∑
k=1

(〈ηAk,M− Zk〉+
η

2
‖M− Zk‖2)

(20)

where we also scaled the Ak by η.
Since Lη is a combination of convex functions it is also convex and we can find the global
minima w.r.t M by finding the critical points of Lη, i.e. setting the respective derivative
of Lη to zero:
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∂Lη
∂M

=
1

λ
(M− R̄) +

d∑
k=1

ηAk + η(M− Zk) = 0

⇔ (
1

λ
+ ηd)M =

1

λ
R̄− η

d∑
k=1

Ak + Zk

⇔M =
R̄ + λη

∑d
k=1 Zk −Ak

1 + ληd

On the other hand we see that minimizing Lη w.r.t. Zk is the same as finding

min
Zk

− η〈Ak,Zk〉+
η

2
‖M− Zk‖2 + γk‖Pk(Zk)‖∗

= min
Zk

− 〈Ak,Zk〉+
1

2
‖M− Zk‖2 +

γk
η
‖Pk(Zk)‖∗

= min
Zk

1

2
‖Ak‖2 + 〈Ak,M〉 − 〈Ak,Zk〉+

1

2
‖M− Zk‖2 +

γk
η
‖Pk(Zk)‖∗

= min
Zk

1

2
‖Ak‖2 + 〈Ak,M− Zk〉+

1

2
‖M− Zk‖2 +

γk
η
‖Pk(Zk)‖∗

= min
Zk

1

2
‖Ak + M− Zk‖2 +

γk
η
‖Pk(Zk)‖∗

= min
Zk

1

2
‖Pk(Ak + M)−Pk(Zk)‖2 +

γk
η
‖Pk(Zk)‖∗

= min
Pk(Zk)

1

2
‖Pk(Ak + M)−Pk(Zk)‖2 +

γk
η
‖Pk(Zk)‖∗

where the unique solution Pk(Ẑk) is given by Sγk/η(Pk(Ak + M)) (see Section 3.1).
To find the optimal Ẑk, we have to fold Sγk/η(Pk(Ak + M)) back to a tensor, reversing
the effect of Pk. This reverse folding operation will be denoted by P−1

k .
Note that M = P−1(Pk(M)) and

argminZk Lη(M, {Zk}dk=1, {Ak}dk=1) = P−1
k (S γk

η
(Pk(Ak + M))).

Thus we can iteratively repeat the two steps above until Mt converges
(see [18] for an explanation of the convergence criterium). So finally,

22



Algorithm Tensor Aproximation with ADMM
INPUT: R̄, λ, γk for k in {1, . . . , d}, ε
Initialize M,Zk,Ak for each k
repeat

M← 1
1+ληd(R̄ + λη

∑d
k=1 Zk −Ak)

for k ∈ {1, . . . , d} do
Zk ← P−1

k (Sγk/η(Pk(Ak + M)))
Ak ← Ak + η(M− Zk)

end for
until ‖M− Zk‖ < ε and

∥∥∥ 1
λ(M−R) +

∑d
k=1 Ak

∥∥∥ < ε

where M converges to a solution of (13) for every η > 0. η can influence the number of
iterations needed, [18] suggests using η = η0

std(M) . A few experiments show that setting
η = 1 performs similarly well in our context.

4.5 Unbalanced Tensors

The results in Chapter 5 show that with the regularization choosen in Section 4.3,
BOTIC can achieve great results on synthetic data R ∈ Rm×m×m.
However, without further precautions, good results are only obtained for balanced data
where each dimension/axis of our data has a similiar size, i.e. R ∈ Rm1×m2×m3 where
m1 ≈ m2 ≈ m3. When working with real world data this assumption is often not
fullfilled. For example in the context of recommender systems where Rijk is the affinity
of user i to movie j at time k. In that case we are given have a huge pool of users
and movies but are often only interested in the change over bigger time intervals like
weeks or months. This results in m3 being several magnitudes smaller. Generally, when
using BOTIC on unbalanced data, the second order terms have varying sizes and thus
are likely to have different ranks as well. While the user-item second order term may
have a (comparably) high rank (e.g. 50) the user-time term will be of a much lower rank
(e.g. 5). A solution would be to use a different regularization parameter for each second
order term. Since increasing the number of cross validated parameters also exponentially
increases the running time other solutions have to be found.
To mitigate this problem we will instead only use one parameter for second order terms
but scale according to the size of the tensor

λ3i = ciλ1 =

√
minj∈{1,2,3}\{i}mj

minj∈{1,2,3}mj
λ1.

Similarly, the scaling factor for the overlap nuclear norm is set to γk =
√
mk to allow the

tensor to have a low rank in each mode but also adapt to the size of the tensor.
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4.6 Warm Starts and other Heuristics

With many regularization pairs to cross validate, our method has to be evaluated many
times and should thus be as optimized as possible. The main contributer to the runtime
of our algorithm are the many SVDs that have to be computed in each iteration. For
BOTIC we need three soft-threshold SVDs for each second order term and three more
soft-threshold SVDs at each iteration of ADMM when approximating the third order
term.
This leaves us with two chances for improvement. Either make the SVD faster or use
less SVDs overall. To compute the SVD we will use the highly optimized FORTRAN
routine ARPACK [24] that only computes the k largest singular vectors. Thus singular
vectors coresponding to small singular values that don’t contribute to the soft-threshhold
SVD are never computed. We use the soft-threshold SVD computed in the last iteration
to choose the value of k in the current iteration. One could potentially use the SVD of
the last iterate as a strating point for iterative improvements, however since ARPACK
usually converges in only very few iterations anyway the benefits would only be small.
With a fast SVD the next step is to reduce the number of SVDs that have to be computed.
This can be done by reducing the number of iterations BOTIC needs until it converges.
Since the number of iterations for each Λ ∈ V strongly depends on

∥∥M0 −M∞
∥∥2

F

(Proposition 4.2), choosing a good estimate M0 of the solution M∞ can speed up the
convergence significantly.
We will now discuss several possibilities of these so called warm starts and evaluate their
performance. V = V(1) × V(2) is assumed where λ1 ∈ V(1) is the second order regular-
ization and λ2 ∈ V(2) the third order regularization. As a baseline the warm starting
method based on the OMIC framework will be used [omic]. As detailed in Section 4.2,
a series of intermediate results are computed for Λ̄ = pk1,k2,k3(λ), λ ∈ Vk1,k2,k3 such that∑K1,K2,K3

k1,k2,k3=1 M
Λk1k2k3
(k1,k2,k3) can be used as a warm start for Λ.

An other approach would be to use already computed MΛ as a warm start for similar Λ̂.
We propose several warm starting schemes:

last:
for (V(1)

i ,V(2)
j ), j > 1 use M (V(1)

i ,V(2)
(j−1)

)

last+:
for (V(1)

i ,V(2)
j ), j > 1 use M (V(1)

i ,V(2)
(j−1)

),

for (V(1)
i ,V(2)

j ), j = 1, i > 1 use M (V(1)
(i−1)

,V(2)
j )

last mean:
for (V(1)

i ,V(2)
j ), i > 1, j > 1 use 1

2(M
(V(1)
i ,V(2)

(j−1)
)

+M
(V(1)

(i−1)
,V(2)
j )

),

for (V(1)
i ,V(2)

j ), i = 1, j > 1 use M (V(1)
i ,V(2)

(j−1)) ,

for (V(1)
i ,V(2)

j ), i > 1, j = 1 use M (V(1)
(i−1)

,V(2)
j )
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An evaluation of warm starting methods can be found in table 1. BOTIC was evaluated
on synthetic data (described in 5.2) of the size 10× 10× 10 with 10% observed entries.
V(1) and V(2) were equidistantly sampled in the log domain of real intervals.

omic last last+ last mean last+ without heuristic

SVD 43.424.172 11.261.118 7.660.158 31.615.980 25.852.464
BOTIC 699.152 170.623 116.063 479.030 115.099
ADMM 672.604 170.628 116.063 479.030 668.309
time 2830 s 706 s 464 s 2041 s 1604 s

Table 1: Several warm starting methods and the number of ARPACK(SVD) iterations,
ADMM iterations and BOTIC iterations needed as well as the total computation
time. All but the last method use the described heuristic, i.e. only evaluate one
ADMM iteration per BOTIC iteration.

Additionally, we can use the heuristic that the first few iterations of BOTIC don’t need
high precision results since the iterates change quite a bit from iteration to iteration
anyway. As long as the direction is approximately correct, we will eventually start
converging and can start using a higher precision to guarantee convergence.
This heuristic can be applied to the overlap nuclear norm regularization of the third order
terms. Instead of waiting for ADMM to converge we can only computed very few ADMM
iterations at each iteration of BOTIC. The state of the ADMM from this approximate
result is saved and used as a starting point for the next few ADMM iterations. This also
means that the third order terms are not very accurate at first but will get better and
better at each step until ADMM converges in the few iterations it is given.
The best results were obtained when only one ADMM iteration is performed in each
iteration of BOTIC. In this case, only six SVDs are computed in each iteration of BOTIC.
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5 Experiments

In this chapter several experiments are designed to test the capabilities of BOTIC. The
synthetic is introduced, followed by a description of the evaluation metrics and the base-
lines we used to compare the obtained results. Next, the experimental setup is detailed.
The results are described and discussed thoroughly. The final evaluation of BOMIC will
then be given in the next chapter.

5.1 Baselines and Metrics

For the synthetic data experiments we compared the performance of BOTIC (and the
BOTIC variant with fixed Tucker ranks described in Section 4.3) against several tensor-
based and matrix-based completion methods. As mentioned in Chapter 3, we can use
an Imputation procedure (similar to Soft-Impute in Section 3.1) to find the best rank-r
approximation and the best rank-[r, r, r] approximation even with missing data. The
best rank-r approximation was found with Alternating Least Squares (ALS) [25] and
the best rank-[r, r, r] was found with HOOI (see Section 2.3.2). Additionally, we used
cross validation to dynamically choose a Tucker rank from a restricted set of possibilities
(HOOI-sel). optTR [15] is used as a representative for methods that are not build on
the idea of Imputation. Instead a gradient-based approach was used. Finally, in avg-SI,
Soft-Impute was applied to 3 matrices each obtained by averaging over one mode of the
tensor. After these matrices have been completed the three matrices were recombined to
form a tensor. To sum up, we investigated:

• [BOTIC] with overlap nuclear norm regularization,

• [BOTIC-TR] with third order terms fixed at a Tucker rank of [2, 2, 2],

• [CP-ALS-r] Imputation-based, best r-rank,

• [HOOI-r] Imputation-based, best [r, r, r]-rank,

• [HOOI-sel] Imputation-based, best rank-[r, r, r] with r ∈ {3, . . . , 7},

• [optTR] Gradient-based, low Tucker rank,

• [avg-SI] Soft-Impute on the averaged tensor.

Internal regularization parameters are searched for with 5 fold cross validation, other
parameters (e.g. which n-ranks to use for HOOI-sel) with 10 fold cross validation. All
methods are given 5000 iterations per set of investigated parameters. If no parameters
are to be selected the method is given 5000 iterations in total. The optimization tol-
erance is set to ε = 10−4. Second order regularizations (BOTIC, BOTIC-TR, avg-SI)
are selected from 8 samples in the log domain of [0.001, 2]. Third order regularizations
(BOTIC) are selected from 8 samples in the log domain of [0.01, 5].
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We will now discuss the metrics used to evaluate and compare the results from our
methods. Since the goal of the OTIC framework is to minimize w.r.t to the Frobenius
norm, the most important metric to evaluate the quality of a tensor completion is the
root mean square error (RMSE).

Definition 5.1.
The RMSE between two tensors A,B ∈ Rm1×···×md

on a set of entries Ω ⊂ {1, . . . ,m1} × · · · × {1, . . . ,md} is definied as

RMSE(A,B,Ω) :=

√
1

|Ω|
‖PΩA−PΩB‖2F .

If the ground truth is known we can decompose the RMSE into several orthogonal com-
ponents of the OTIC model. We can then analyze how well sepecific terms are completed.
The resulting metric is called tensor bias deviation (TBD).

Definition 5.2.
The TBD between two tensors A,B ∈ Rm1×···×md w.r.t. Sk1,k2,k3 is definied as

TBDk1k2k3(A,B) :=

√
1

m1m2 · · ·md

∥∥Πk1k2k3(A)−Πk1k2k3(B)
∥∥2

F
.

Note that under the BOTIC model TBD111 meassures the deviation in the mean of
the tensors, TBD211, TBD121, TBD112 the deviation of the specific biases, TBD122,
TBD212, TBD221 the RMSE of the second order terms and TBD222 the RMSE on the
third order residuals. Using TBD we can explain the error meassured by the RMSE of
three dimensional tensors A,B ∈ Rm1×m2×m3 more precisely:

RMSE(A,B)2 =
1

m1m2m3
‖A−B‖2F

=
1

m1m2m3

∥∥∥∥∥∥
2,2,2∑

k1,k2,k3=1

Πk1k2k3(A)−
2,2,2∑

k1,k2,k3=1

Πk1k2k3(A)

∥∥∥∥∥∥
2

F

=

2,2,2∑
k1,k2,k3=1

TBDk1k2k3(A,B)2

Additionally, we define B0 := TBD111, B1 :=
√
TBD2

211 + TBD2
121 + TBD2

112,
B2 :=

√
TBD2

122 + TBD2
212 + TBD2

221 and B4 := TBD222,
comprehensively contributing the error to zeroth, first, second and third order terms:

RMSE(A,B)2 = B0(A,B)2 +B1(A,B)2 +B2(A,B)2 +B3(A,B)2

Finally we define the Spearman Correlation (SPC), the corellation between the scores of
two ordered sets.
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Definition 5.3.
The SPC between two tensors A,B ∈ Rm1×···×md is defined as

SPC(A,B) := ρrgA,rgB =
cov(rgA, rgB)

std(rgA)std(rgB)

where rgM are the scores of M, i.e. Mi1i2...id is the (rgM)i1i2...id-th biggest value of M.

5.2 Synthetic Data Experiments

The goal of this set of experiments is to design synthetic data that allow us to control
how much of the data can be attributed to first, second and third order interactions.
We then investigated the influence of the portion of observed entires and the influence of
second and third order terms on the quality of the prediction.

5.2.1 Generation Procedure

The data consists of three orthogonal summands, T(1),T(2),T(3) ∈ Rm1×m2×m3 .
Every summand is normalized to have the same Frobenius norm as a tensor which has
ones everywhere, i.e.

∥∥∥T(l)
∥∥∥
F

=
√
m1m2m3.

The first term T(1) consists of a sum of pure (first order) biases, i.e.
T(1)
k1,k2,k3

= b(1)
k1

+b(2)
k2

+b(3)
k3

where b(l) are centered normalized random gaussian vectors.
The second summand T(2) consists of a sum of purely second order terms that caputure
the interactions of pairs of items, free from any item specific bias. These effects can be
represented with low rank matrices, i.e. T(2)

k1,k2,k3
= S

(1)
k1,k2

+S
(2)
k2,k3

+S
(3)
k1,k3

where S(l) has

a (low) fixed rank r1 and is free of order one phenomena (S(l)
i,· and S

(l)
·,j sum up to zero).

More precisely,

S(l) =

r1∑
i=1

u(l,i)(u(l,i))T

where u(l,i) = v(l,i) −
i−1∑
j=0

(v(l,i))T (v(l,j))∥∥v(l,j)
∥∥2

2

v(l,j)

where v(l,j) are again centered normalized random gaussian vectors.
T(3) is a purely third order term. This tensor has a (low) fixed Tucker rank [r2, r2, r2]

and is free of lower biases, i.e. T(1)
·,k2,k3 , T

(1)
k1,·,k3 and T(1)

k1,k2,· sum up to zero.
More preciesly,

S(l) =

r2∑
i=1

w(1,i) ◦w(2,i) ◦w(3,i)

where w(l,i) = x(l,i) −
i−1∑
j=0

(x(l,i))Tx(l,j)∥∥x(l,j)
∥∥2

2

x(l,j).
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We combine the three tensors with a weighted sum so we can control the influence of
each factor,

T =
T(1) + αT(2) + βT(3)√

1 + α2 + β2

where α controls the influence of second order terms and β controls to influence of third
order terms. The resulting data has norm ‖T‖F =

√
m1m2m3 and a Tucker rank of

[r, r, r] where r = 1 + 1 + 2r1 + r2.

5.2.2 Results

We ran a set of experiments on the synthetic data described in the previous section
investigating the capabilities of BOTIC and the baselines under changing conditions.
The second order terms were set to be of rank 2 (r1 = 2) and the third order term had
Tucker rank [1, 1, 1] (r2 = 1). For α > 0, β > 0, the data thus has a Tucker rank of
[7, 7, 7] and a rank of ≈ 11-13 (shown by numerical experiments).
The plotted results can be found in the Appendix (Section 7.1). All plots show the RMSE,
the SPC, B0, B1, B2 and B3. The graphs are smoothed out with a moving average by
replacing each point with the mean of the point itself and its direct neighbors. Note that
for CP-ALS-r, r > 9 no useful predictions could be made because the Imputation did
not converge.

Percentage of Observed Entries

First, we will investigate how the methods perform with different percentages of observed
data. Synthetic data is generated for 20 different percentages pi which are sampled
equidistantly in the log domain of [0.5%, 50%]. For each pi, 5 tensors are generated and
(1− pi) % of the values are hidden from the methods. All tensors have an equal portion
of first, second and third order terms, i.e. α = β = 1. Each method is started on each
tensor and the quality of the result is measured with the metrics described in Section
5.1. Figure 1 and Figure 2 show the performance of HOOI-r and CP-ALS-r for different
values of r while in Figure 3 a complete overview of all methods is given. In all figures the
percentage of observed entries (p) is plotted against RMSE, B0, B1, B2, B3 and SPC.
For BOTIC we excpect low values of RMSE, B0, B1, B2 and B3 as well as a SPC close
to 1, indicating a small prediction error.
As to be excpected, when p gets smaller all methods perform worse until they approach
a RMSE of 1 where they become useless, not finding any of the patterns in the data (The
all-zero tensor has a RMSE of 1 on the synthetic data).
Both HOOI-r and CP-ALS-r perform increasingly well with r increasingly closer to r = 8
because when using a rank that is too low the data can’t be represented well and the
methods will underfit. When the ranks are choosen too high both methods are prone
to overfitting, finding patterns in the observed values that are not present in the ground
truth.
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Note that in Figure 1, in particular on RMSE and B3, when the percentage of observed
entries is low enough the optimal performance was not always achieved by choosing the
true ranks of the ground truth. Instead smaller ranks gain an advantage because of the
lower number of values that have to be fitted. Around pi = 5% HOOI-4 performed best.
Generally CP and Tucker based methods show very similiar performance.
The gradient-based optTR can reconstruct the ground truth near pearfectly for high p
but is worse than the other methods for p < 15% and ’useless’ for p < 10%.
BOITC and BOTIC-TR generally perform better than all other methods, especially for
small p. The RMSE in Figure 3 is smaller then 1 at all times and only really high for
p < 5% (p < 2% for BOTIC-TR).
When comparing BOTIC and BOTIC-TR we first note that for high p (> 11%) BOTIC-
TR is the only method that is not able to score a RMSE near 0. As discussed in 4.3
this is likely due to overfitting of the third order term. Still BOTIC-TR outperforms
BOTIC for 3% ≤ p ≤ 10%. This can be explained by the additional information that
BOTIC-TR is given about the data. BOTIC only searches for a rank [2, 2, 2] third order
term, not considering all possibilities. While this is definitely a great disadvantage for
higher values of p, when only a few entires are observed this limits the overfitting that
can occur.

Second Order Terms

Next, we will investigate how the methods perform with an increasing influence of second
order terms in the observed data. We will steadily increase α, increasing the proportion
of second order term in the data.
Synthetic data is generated for 20 different percentages of αi which are sampled equidis-
tantly from [0, 5]. For each αi, 10 tensors are generated. Five tensors have p = 5% while
the other five have p = 10%. Additionally, we set β = 0, i.e. don’t allow any order three
interactions in the data.
Figure 4 and Figure 5 show the performance of HOOI-r and CP-ALS-r for different values
of r and p = 5%. Figure 6 and Figure 7 show an overview of selected methods for p = 5%
and p = 10% respectively. optTR is excluded from the graph for p = 5% due to its
terrible performance.
Similar to the first set of experiments, HOOI-r and CP-ALS-r show the best performance
when the estimated ranks are close to the ranks of the ground truth.
In Figure 6 we can see the superiority of BOTIC over all other methods when p = 5%,
i.e. when the percentage of observed entries is low. While HOOI-r and CP-ALS-r show
high variance in the quality of the approximation, BOTIC has a consistent RMSE smaller
than 0.1 and a perfect SPC very close to 1 outperforming any other method despite not
having any rank information about the ground truth. Although BOTIC-TR and avg-
SI are more consistent than HOOI-r and CP-ALS-r, Figure 6 shows that their RMSE
grows as the influence of second order terms increases, surpassing both HOOI and CP-
ALS based methods. Note that HOOI-sel, which used less information about the ground
truth data performs considerably worse than HOOI-6 which knew the exact Tucker rank
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of the data. Figure 6 also shows that the matrix based avg-SI has problems in finding
the first and second oder bias terms making it the worst performing method after optTR,
despite its perfect B3 score.
When the percentage of observed entries is increased to p = 10%, optTR and HOOI-sel
can close the gap reaching similar near-perfect scores on all metrics. This can be seen in
Figure 7. BOTIC-TR doesn’t reach an RMSE below 0.1, again indicating an overfitting
due to the overestimation of third order ranks.

Third Order Terms

Finally, we will investigate how the methods perform with an increasing influence of third
order terms in the observed data. We will steadily increase β, increasing the proportion
of third order term in the data.
Most of the experimental setup is the same as in the above paragraph, this time sampling
20 values βi from [0, 5] and setting α = 0.

Again, Figure 8 and Figure 9 show the performance of HOOI-r and CP-ALS-r for different
values of r and p = 5%. Figure 10 and Figure 11] show an overview of selected methods
for p = 5% and p = 10% respectively. avg-SI is excluded from the graph for p = 10%
due to its (expected) terrible performance (Because avg-SI is based on the avergages of
the tensor, it can’t find any order three interactions).
Similar to the other sets of experiments, HOOI-r and CP-ALS-r show the best perfor-
mance when the estimated ranks are close to the ranks of the ground truth. Note that
unlike in the previous paragraph, BOTIC is not achieving near-perfect results for p = 5%.
Instead, Figure 10 shows that the methods based on CP-ALS and HOOI perform best.
BOTIC-TR has the best RMSE and is the only method that has a consistent SPC of 1
even as the influence of third order terms incerases. This can be attributed to the fact
that BOTIC-TR is using a very accurate estimation of the true ranks of the tensor. Even
tough BOTIC has a relatively high RMSE it also shows good results on B0 and a SPC
score which is not that far of from 1. This indicates that BOTIC can find many relevant
patterns in the data without any known rank-information.
When the percentage of observed entries is increased to p = 10%, BOTIC shows an
increased relative performance as well, beating all methods except optTR. Figure 7 shows
that it is the only method that detects that the data doesn’t contain any second order
interactions, resulting in a perfect B2 score. Most notably, BOTIC-TR is outperformed
by all other methods demonstrating that the disadvantage of its inflexibility becomes
more notable with higher percentage of observed entries.
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6 Conclusion

In this thesis we developed the flexible and interpretable OTIC framework which allows
the completion of tensors with missing entries. We examined the special case BOTIC
and compared its performance against other baselines. The results of the synthetic data
experiments in the previous chapter show that BOTIC can dynamically find the most
important patterns in the data even when the percentage of observed entries is so low
that the other baselines could not be used in a meaningful way, this is particularly true
when the second order terms have the biggest influence. We note that although the
performance of BOTIC on tensors consisting of mainly third-order terms is great it can’t
match the performance of some of the other methods which use an good estimate of the
rank structure of the ground truth. However, BOTIC doesn’t need any rank information
about the ground truth. This means that it has a big advantage in real world applications
where the true ranks can’t be estimated since the performance of methods like HOOI-r
and CP-ALS-r whose performance strongly depends on the quality of the rank estimste.
Evaluating BOTIC on a large real-world dataset requires some ingenious tricks in the
implementation and paralelisation which will be left to future work. We will conclude this
thesis by noting that other methods could be build on top of the developed foundations.
For example, the OTIC framework has the potential to also include side information
which could further improve the performance, especially in real world applications.
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7 Appendix

7.1 Figures

All plots and other visualisations from Chapter 5 as discussed in Section 5.2.2. Starting
with the results under changing percentage of observed entries, followed by the results
under increasing influence of second order terms. Finally, the results of a changing
importance of third order terms are presented.
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Figure 1: Tucker Decomposition based Imputation using HOOI for different n-ranks.
Choosing the true n-ranks (r = 7) performs best for high p, while underesti-
mating works even better for small p.

34



Figure 2: CP Decomposition based Imputation using ALS for different ranks.
Choosing a rank close to the true rank performs best.
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Figure 3: All methods under a changing percentage of observed entries.
Note that not all points can be seen for optTR.
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Figure 4: Tucker Decomposition based Imputation using HOOI for different n-ranks,
p=5%. Choosing the true n-ranks (r = 6) performs best.
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Figure 5: CP Decomposition based Imputation using ALS for different ranks, p=5%.
Choosing a rank close to the true rank performs best.
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Figure 6: A selection of methods under an increasing relevance of second order terms,
p=5%.
Note that optTR is excluded due to poor performance and avg-SI has a con-
sistent B3 of zero. 39



Figure 7: A selection of methods under an increasing relevance of second order terms,
p=10%.
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Figure 8: Tucker Decomposition based Imputation using HOOI for different n-ranks,
p=5%. Choosing n-ranks close to the true n-ranks performs best.
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Figure 9: CP Decomposition based Imputation using ALS for different ranks, p=5%.
Choosing a rank close to the true rank performs best.

42



Figure 10: All methods under an increasing relevance of third order terms, p=5%.
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Figure 11: A selection of methods under an increasing relevance of third order terms,
p=10%. Note that avg-SI is excluded due to poor performance.
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7.2 Convergence

We will now proof Proposition 4.1 and thus show that the proposed algorithm converges.
We will largely follow the structure of the proof of convergence for OMIC [1].
Remember that

SΛ(R) =

K1,K2,K3∑
k1,k2,k3=1

Sλk1k2k3 (R×1 (Xk1)T ×2 (Y k2)T ×3 (Zk3)T )×1 X
k1 ×2 Y

k2 ×3 Z
k3

is the optimal solution to

min
M

1

2

∥∥∥∥∥∥R−
K1,K2,K3∑
k1,k2,k3=1

Πk1k2k3(M)

∥∥∥∥∥∥
2

F

+

K1,K2,K3∑
k1,k2,k3=1

λk1k2k3R(Pk1k2k3(M))

and Sλ(R) is the optimal solution to

min
M

1

2
‖R−M‖2F + λR(M).

We will only show Proposition 4.1 for the regularization R(M) =
∑d

k=1 γk ‖Pk(M)‖∗
choosen in Section 4.3. First we need to proof a property of the operator Sλ. This proof
is based on Proof A.2 in [12].

Lemma 7.1. For any two tensors R1,R2 ∈ Rm1×m2×m3

‖Sλ(R1)− Sλ(R2)‖F ≤ ‖R1 −R2‖F .

Proof.
Let M̂i := Sλ(Mi) for i ∈ {1, 2}.
Note that M̂i is an optimal solution to (14) (for R = Ri). Because the objective function
of (14) is convex we know by Lemma 2.16 that for i ∈ {1, 2}:

0 ∈ M̂i −R +
3∑

k=1

γk∂
∥∥∥Pk(M̂)

∥∥∥
∗

Let fk : Rm1×m2×m3 → R,Z 7→ ‖Pk(Z)‖∗ and f̂k : Rmk×(m1m2m3/mk) → R, Z 7→ ‖Z‖∗.
Let pk(M̂i) denote an element from ∂fk(M̂i). We get

M̂i −Mi +

3∑
k=1

γkpk(M̂i) = 0

and thus

(M̂1 − M̂2)− (M1 −M2) +

3∑
k=1

γk(pk(M̂1)− pk(M̂2)) = 0
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which implies

〈M̂1 − M̂2, M̂1 − M̂2〉 − 〈M1 −M2, M̂1 − M̂2〉 +

3∑
k=1

γk〈pk(M̂1)− pk(M̂2), M̂1 − M̂2〉 = 0.

Using the definition of the subgradient we see that

pk(M̂i) is a subgradient of fk at M̂i

⇔ ∀Z ∈ Rm1×m2×m3 : fk(Z) ≥ fk(M̂i) + 〈pk(M̂i),Z− M̂i〉
⇔ ∀Z ∈ Rm1×m2×m3 : fk(Z) ≥ fk(M̂i) + 〈Pk(pk(M̂i)),Pk(Z− M̂i)〉
⇔ ∀Z ∈ Rm1×m2×m3 : f̂k(Pk(Z)) ≥ f̂k(Pk(M̂i)) + 〈Pk(pk(M̂i)),Pk(Z)−Pk(M̂i)〉
⇔ Pk(pk(M̂i)) is a subgradient of f̂k at Pk(M̂i). (21)

From Proof A.2 in [12] we know that for two matrices Z1, Z2 and pZi ∈ ∂‖Zi‖∗

〈pZ1 − pZ2 , Z1 − Z2〉 ≥ 0 (22)

and thus

〈pk(M̂1)− pk(M̂2), M̂1 − M̂2〉
= 〈Pk(pk(M̂1))−Pk(pk(M̂2)),Pk(M̂1)−Pk(M̂2)〉
≥ 0. Using (21) and (22)

Therefore,

3∑
k=1

γk〈pk(M̂1)− pk(M̂2), M̂1 − M̂2〉 ≥ 0. (23)

So finally

∥∥∥M̂1 − M̂2

∥∥∥2

F
=〈M̂1 − M̂2, M̂1 − M̂2〉

≤〈M1 −M2, M̂1 − M̂2〉 Using (23)

≤‖M1 −M2‖F
∥∥∥M̂1 − M̂2

∥∥∥
F

(Cauchy-Schwarz)

=‖M1 −M2‖F
∥∥∥M̂1 − M̂2

∥∥∥
F
.

The result follows.
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Now we can show a similar property for SΛ, in particular we will show that it SΛ is a
continous map.

Lemma 7.2. For any two tensors R1,R2 ∈ Rm1×m2×m3

‖SΛ(R1)− SΛ(R2)‖F ≤ ‖R1 −R2‖F .

Proof.

‖SΛ(R1)− SΛ(R2)‖F

=

∥∥∥∥∥
K1,K2,K3∑
k1,k2,k3=1

Sλk1k2k3 (R1 ×1 (Xk1)T ×2 (Y k2)T ×3 (Zk3)T )×1 X
k1 ×2 Y

k2 ×3 Z
k3

−
K1,K2,K3∑
k1,k2,k3=1

Sλk1k2k3 (R2 ×1 (Xk1)T ×2 (Y k2)T ×3 (Zk3)T )×1 X
k1 ×2 Y

k2 ×3 Z
k3

∥∥∥∥∥
=

∥∥∥∥∥∥
K1,K2,K3∑
k1,k2,k3=1

Sλk1k2k3 ((R1 −R2)×1 (Xk1)T ×2 (Y k2)T ×3 (Zk3)T )×1 X
k1 ×2 Y

k2 ×3 Z
k3

∥∥∥∥∥∥
=

K1,K2,K3∑
k1,k2,k3=1

∥∥∥Sλk1k2k3 ((R1 −R2)×1 (Xk1)T ×2 (Y k2)T ×3 (Zk3)T )
∥∥∥

≤
K1,K2,K3∑
k1,k2,k3=1

∥∥∥(R1 −R2)×1 (Xk1)T ×2 (Y k2)T ×3 (Zk3)T )
∥∥∥ by Lemma 7.1

=‖R1 −R2‖F

As an extension to the loss

L(M) =
1

2
‖RΩ −PΩ(M)‖2F +

K1,K2,K3∑
k1,k2,k3=1

Λk1k2k3R(Pk1,k2,k3(M))

we define

Q(A|B) =
1

2
‖RΩ + PΩ⊥(B)−A‖2F +

K1,K2,K3∑
k1,k2,k3=1

Λk1k2k3R(Pk1,k2,k3(A)).

Note that L(M) = Q(M|M) and Mi+1 = argminMQ(M|Mi).

In the following let M0 ∈ Rm1×m2×m3 and Mi+1 = argminMQ(M|Mi).
We will show that the loss decreases monotonically.

Lemma 7.3.

L(Mi+1) ≤ Q(Mi+1|Mi) ≤ L(Mi)
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Proof.

L(Mi) = Q(Mi|Mi)

=
1

2

∥∥RΩ + PΩ⊥(Mi)−Mi
∥∥2

F
+

K1,K2,K3∑
k1,k2,k3=1

λk1k2k3R(Pk1k2k3(Mi))

≥ min
M

1

2

∥∥RΩ + PΩ⊥(Mi)−M
∥∥2

F
+

K1,K2,K3∑
k1,k2,k3=1

λk1k2k3R(Pk1k2k3(M))

= Q(Mi+1|Mi)

=
1

2

∥∥(RΩ −PΩ(Mi+1)) + (PΩ⊥(Mi)−PΩ⊥(Mi+1)
∥∥2

F
+

K1,K2,K3∑
k1,k2,k3=1

λk1k2k3R(Pk1k2k3(Mi+1))

≥ 1

2

∥∥RΩ −PΩ(Mi+1)
∥∥2

F
+

K1,K2,K3∑
k1,k2,k3=1

λk1k2k3R(Pk1k2k3(Mi+1))

= L(Mi+1)

Now we show that the difference between the iterates decreases monotonically to zero,

Lemma 7.4. ∥∥Mi −Mi+1
∥∥
F
≤
∥∥Mi−1 −Mi

∥∥
F

Furthermore,
Mi −Mi−1 → 0 as i→∞.

Proof. This proof is almost the same as that of Lemma B.3 in OIMC.
First we have

∥∥Mi −Mi+1
∥∥
F

=
∥∥SΛ(RΩ + PΩ⊥(Mi−1))− SΛ(RΩ + PΩ⊥(Mi))

∥∥
≤
∥∥(RΩ + PΩ⊥(Mi−1))− (RΩ + PΩ⊥(Mi))

∥∥ by Lemma 7.2

=
∥∥PΩ⊥(Mi−1)−PΩ⊥(Mi)

∥∥
≤
∥∥Mi−1 −Mi

∥∥.
Therefore

∥∥Mi −Mi+1
∥∥
F
is a monotone and bounded sequence and must convergence as

i → ∞. In particular,
∥∥Mi −Mi+1

∥∥
F
−
∥∥Mi−1 −Mi

∥∥
F
→ 0 and by the last inequalty

from above ∥∥PΩ⊥(Mi−1)−PΩ⊥(Mi)
∥∥− ∥∥Mi−1 −Mi

∥∥
F
→ 0.

which shows the following:
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∥∥PΩ(Mi−1)−PΩ(Mi)
∥∥→ 0. (24)

Similarly Lemma 7.3 shows that L(Mi)− L(Mi+1)→ 0 and thus also

Q(Mi+1|Mi)−Q(Mi|Mi)→ 0.

Furthermore since,

Q(Mi+1|Mi)−Q(Mi|Mi)

=
1

2

∥∥RΩ + PΩ⊥(Mi)−Mi+1
∥∥2

F
+

K1,K2,K3∑
k1,k2,k3=1

λk1k2k3R(Pk1k2k3(Mi+1))

− 1

2

∥∥RΩ + PΩ⊥(Mi+1)−Mi+1
∥∥2

F
−

K1,K2,K3∑
k1,k2,k3=1

λk1k2k3R(Pk1k2k3(Mi+1))

=
∥∥PΩ⊥(Mi−1)−PΩ⊥(Mi)

∥∥
we can conclude:

∥∥PΩ⊥(Mi−1)−PΩ⊥(Mi)
∥∥→ 0. (25)

Finally combining (24) and (25) we get∥∥Mi−1 −Mi
∥∥
F
→ 0

and thus

Mi−1 −Mi → 0.

By compactness there exists at least one subsequence Mni such that
Mni →M∞ as i→∞. Next, we will show that M∞ is a solution to our problem.
We need the following technical result.

Proposition 7.5.
Let pi ∈ ∂

∑K1,K2,K3

k1,k2,k3=1 Λk1k2k3
∑d

k=1 γk
∥∥Pk(Pk1k2k3(Mni))

∥∥
∗ be a sequence of

subgradients of the regularizer
∑K1,K2,K3

k1,k2,k3=1 Λk1k2k3R(Pk1k2k3(Mni)) evaluated at Mni .
There exists a subsequence pn̂i which converges to some

p ∈ ∂
K1,K2,K3∑
k1,k2,k3=1

λk1k2k3

d∑
k=1

γk

∥∥∥Pk(Pk1k2k3(M∞))
∥∥∥
∗
,

a subgradient of the regularizer at M∞.
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Proof. Follows the same arguments as in the proof of Lemma B.4 in OMIC [1].

Lemma 7.6.
M∞ = limi→∞Mni is a solution of (13) and thus:

M∞ = SΛ(RΩ + PΩ⊥(M∞))

Proof.
First note that Mni −Mni−1 → 0 by Lemma 7.4. We can conclude

RΩ + PΩ⊥(Mni−1)−Mni → RΩ −PΩ(M∞).

Furthermore by the definition of Mni

0 ∈ ∂Q(M|Mni−1) = −(RΩ+PΩ⊥(Mni−1)−Mni)+∂

K1,K2,K3∑
k1,k2,k3=1

λk1k2k3R(Pk1k2k3(Mni)).

Hence, we can choose pi ∈ ∂
∑K1,K2,K3

k1,k2,k3=1 λk1k2k3R(Pk1k2k3(Mni)) such that

pi − (RΩ + PΩ⊥(Mni−1)−Mni) = 0.

Now, by Lemma 7.5 there exists a subsequence pn̂i such that pn̂i → p for some

p ∈ ∂
K1,K2,K3∑
k1,k2,k3=1

λk1k2k3R(Pk1k2k3(M∞)).

We obtain

0 = pn̂i − (RΩ + PΩ⊥(Mni−1)−Mni)→ p− (RΩ −PΩ(M∞)),

so finally

0 ∈ ∂L(M∞)

which together with Lemma 2.16 shows the first part of the Lemma.
To see the second part note that since Mni −Mni−1 → 0 also Mni−1 →M∞. Further-
more, using the continouity of SΛ we get

M∞ = lim
i→∞

Mni = lim
i→∞

SΛ(RΩ + PΩ⊥(Mni−1)) = SΛ(RΩ + PΩ⊥(M∞)).

Proof of Proposition 4.1. We have already shown that any limit point of Mi is a solution
to (13). Thus it suffices to show that Mi converges. We have for any i:
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∥∥M∞ −Mi
∥∥2

F
=
∥∥SΛ(RΩ + PΩ⊥(M∞))− SΛ(RΩ + PΩ⊥(Mi−1))

∥∥2

F

≤
∥∥(RΩ + PΩ⊥(M∞))− (RΩ + PΩ⊥(Mi−1))

∥∥2

F

=
∥∥PΩ⊥(M∞)−Mi−1

∥∥2

F
≤
∥∥M∞ −Mi−1

∥∥2

F
,

where at the second line we have used Lemma 7.2. Because ‖M∞ −Mni‖2F → 0 and∥∥M∞ −Mi
∥∥2

F
is monotonically decreasing we get

∥∥M∞ −Mi
∥∥2

F
→ 0 and thus:

lim
i→∞

Mi = lim
i→∞

Mni = M∞.

This concludes the proof of convergence.
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