
Data-Efficient Probabilistic
Time Series Style Transfer
with Transformers
Master’s Thesis

by justus will

supervised by
Prof. Dr. Sophie Fellenz,
Prof. Dr. Marius Kloft, and
Prof. Dr. Jörn Saß

November 4, 2022

Department of Mathematics,
Department of Computer Science





Abstract

Style transfer is the task of recreating data in a different style while still preserving
the original content. In applications to time series, this implies combining structural
information of existing time series with new distinctive characteristics extracted from a
dataset or style reference. If the style dataset contains experimental observations, style
transfer techniques are used to enhance realism, for instance in simulation data. When
used as data augmentation, results in downstream tasks such as time series forecasting can
be greatly improved, especially when high-quality training data is limited. In contrast to
image and text style transfer, where many efficient methods are available, research on time
series style transfer has been limited to slow iterative methods. In this thesis, we show that
model-based methods efficiently solve time series style transfer tasks in diverse settings.
Specifically, we propose a transformer-based architecture with a latent representation that
disentangles content and style information. The underlying generative model allows for
fine control over the style of generated time series. After encoding the desired style, the
style latent space can be fixed, resulting in fast and data-efficient stylized generation.
Extensive experiments show the effectiveness of our approach both on synthetic data and
in applications to finance and speech through comparison against several recent baselines.
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Chapter 1

Introduction and Overview

1.1 Introduction

Synthetic generation of realistic data is a key technique that has seen wide adoption in
a variety of applications across many academic fields. Machine learning algorithms in
particular benefit from additional labeled data, as it allows for models with improved
generalization capabilities, especially when initial training data is limited or expensive
to acquire. In this context, the quality and realism of the augmented data are crucial,
as they directly impact the attainable performance. Good data augmentation allows for
more accurate and more robust inference, for example in prediction tasks. Style transfer
methodology enables realistic generation while still retaining high control over the gener-
ated data. Here, a careful balance between content preservation and stylization allows us
to combine original high-level content with new characteristic style properties. We can,
for example, take simulation data from an imperfect model and improve its utility by en-
hancing the realism of the data, essentially adding realistic noise. Simulation studies are
one of the most important tools in mechanical engineering, natural sciences, and applied
sciences like finance. Researchers greatly benefit from the ability to rapidly and inex-
pensively evaluate their hypothesis, before they are tested in practical experiments. The
ability to improve simulation data is thus highly relevant, even beyond direct applications
to machine learning algorithms.

The abstract notion of style in style transfer is inherently vague. We make the problem
statement precise with the data-driven definition of style that defines style as the set
of properties and characteristics that are inherent in a given dataset and set it apart
from different data. These style features are, of course, highly specific to the exact task
and application domain. In images style might be artistic style and medium, in text it
might be word choice and grammar, and in time series it might be the level and kind of
noise. Although it is sometimes possible to exactly define the desired task-specific style
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(a) Image Style Transfer (b) Time Series Style Transfer

Figure 1. Examples of style transfer on different data. For images, we combine the
contents of a photo (TU Kaiserslautern, Twitter @uni_kl, 19.12.2019) and the artistic
style of a painting (Composition VI by Wassily Kandinsky, 1913). For time series, we
combine the contents of a smooth Gaussian process sample with the style of a noisy
sample of the same process.

characteristics, this becomes infeasible for complex styles such as the abstract style of
realism. In these cases, Neural Style Transfer methods provide an elegant solution by
defining style over a set of learned features. This allows us to automatically extract the
style from a reference style sample or dataset, even for complex style transfer tasks.

Neural Style Transfer was first by proposed on images by Gatys et al. [1], based on con-
volutional features learned during an image classification task. They formulated style
transfer as an optimization problem over the image pixel values and used an iterative
optimization based on back-propagated gradients to obtain stylized images. Recently,
this technique has been adapted for time series. Figure 1 illustrates style transfer on both
kinds of data. While style transfer has been widely adopted in images, text, and audio ap-
plications, where recent model-based approaches perform effective real-time style transfer
[2], the work on time series style transfer has been limited to basic iterative approaches.
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1.2 Contribution

In this thesis, we attempt to close this performance gap by building on ideas from re-
cent advances in text and image style transfer. We develop a model-based probabilistic
framework that enables style transfer for time series tasks across a broad range of diverse
domains. To this end, we propose a deep generative model that is specialized on stylized
generation and disentangles the content and style information in its latent space. This
allows for fast and straight-forward inference through latent swapping: We first encode
the content and style samples into the model’s latent space, and then use the generative
model to decode a stylized time series from a recombination of the original content latent
variables with the new style latent variables. Specifically, we use a variational autoen-
coder that is based on the modern transformer architecture. The desired disentanglement
is obtained with a newly proposed technique that leverages the two losses specific to the
style-transfer problem formulation.

1.3 Notation

We follow standard machine learning notation. When x ∼ Px and Px ≪ λ, i.e. the distri-
bution Px of x is absolutely continuous w.r.t. a measure λ, we denote the Radon–Nikodym
derivative of Px w.r.t. λ with p(x). Then, by definition,

Px(A) =
∫
A
p(x) dλ(x).

If clear from the context, we use Px and p(x) interchangeably, for example, writing
x ∼ p(x). If x is an (absolutely) continuous random variable (w.r.t. the Lebesgue mea-
sure), p(x) is the probability density function. If x is a discrete random variable, then it
is absolutely continuous w.r.t. the counting measure. In this case, p(x) is the probabil-
ity mass function. Throughout this thesis, we will mostly work with continuous random
variables but we note that many arguments hold more generally. For example, Bayes’
theorem

p(θ|x) = p(x|θ)p(θ)
p(x) = p(x|θ)p(θ)∫

p(x|θ)p(θ)dλ(x)

holds as long as all Radon–Nikodym derivatives are given w.r.t. the same underlying
measure λ [3]. Additionally, we assume that all of our datasets are sampled independently
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from a (possibly unknown) data distribution, i.e. xi
iid∼ p(x). Finally, we denote the

concatenation of elements a(k) ∈ RQk to a vector with square brackets, i.e. for each k and
q there exists exactly one i(k, q) with

[a(1), a(2), . . . , a(n)]i(k,q) = a(k)
q .

1.4 Outline

This thesis is structured as follows. In chapter 2 we lay the mathematical foundation
for our method. We explore deep generative models, variational autoencoders, and the
transformer architecture. Then, in chapter 3, we formulate the style transfer task as an
optimization problem and discuss related work. Chapter 4 contains an in-depth descrip-
tion of our proposed method. Next, we show the effectiveness of our method. To this
end, we design and evaluate extensive experiments in chapter 5. The thesis ends with a
brief summary and an outlook on future work.
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Chapter 2

Background

In this chapter we introduce the mathematical concepts that are relevant for our style
transfer method. We formulate deep generative models and variational autoencoders,
deriving them from first principles and giving clear intuitions. Finally, we discuss the
several kinds of neural networks relevant to our method, including a detailed look at
Long Short-Term Memory (LSTM) and transformers.

2.1 Autoencoder

Many complex datasets can be characterised sufficiently accurate by a small set of fea-
tures. For example, a dataset of images containing faces might be described by, among
others, eye and hair colors, size and relative position of facial features like mouth or nose,
and pose. This description represents the contained information much more densely and
meaningfully then the high-dimensional representation in terms of pixel values. Machine
learning applications rely heavily on such sets of representative features as they are useful
in a variety of tasks, e.g. for classification, clustering, regression or visualization. Instead
of creating useful features by hand, neural networks can be used to learn good features.
Using optimization techniques, for example based on gradients, they are trained directly
to adapt to the desired task. The inverse problem, generating a detailed data sample
from a limited description given by a set of features, also has many applications, e.g. for
generation of realistic synthetic data or data compression. In the latter, our goal is to
first encode data into a dense representation and then to decode it, matching the original
as closely as possible. One particular approach to this task is to use a neural autoencoder
(AE). Here, both feature extraction and generation are parameterized with a neural net-
work, the encoder gψ and decoder fθ, respectively. For a given data sample x, the goal is
to minimize the reconstruction error between the original x and the reconstruction

x′ = fθ(gψ(x)),
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as measured by a reconstruction loss L(x, x′). Over a dataset X = {x1, x2, . . . , xN}, we
can, for example, use the Mean Squared Error (MSE), minimizing:

L(X) := 1
N

N∑
i=1

∥xi − x′
i∥

2
2

x′
i = fθ(gψ(xi))

(2.1)

Finding good parameters is straight forward: After specifying the architecture of the
encoder and decoder, e.g. as a Convolutional Neural Network (CNN), we minimize the
reconstruction loss over the given dataset, e.g. iteratively using back-propagated gradi-
ents.

2.2 VAE

Using the above autoencoder, in particular for data generation tasks, has several issues.
The latent space, to which data is mapped to, lacks interpretability and structure and
there is no straightforward way to generate new samples. The decoder is trained to work
well only for data that is represented sufficiently by the training set. With increased
distance to the points in the latent space representing seen data, the quality of decoded
points deteriorates rapidly. This may suffice for simple compression but is unsuitable for
generation. To deal with these issues we introduce the variational autoencoder (VAE),
which was first described by Kingma et al. [4]. Based on a generative model of the data,
it has two advantages: It allows for easy and interpretable generation and it regularizes
the latent space, yielding more robust reconstructions.

First, we define a stochastic procedure to generate data. This (deep) generative model
should be expressive enough to handle the complexity of data generation. Parameterized
by θ, it needs to be flexible enough to allow us to find values for θ that are well adapted
to the given training data. We model both the observed variable x and the latent variable
z as random variables, with a joint distribution p(x, z) specified by

z ∼ pθ(z)

x|z ∼ pθ(x|z).

During generation, we first sample a point z in the latent space, yielding a low-dimensional
representation. Without further information this is done by sampling from the prior pθ(z).
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This representation now informs the conditional distribution p(x|z) over the data domain,
from which a data point x can be sampled from. Usually, the prior is chosen to be simple
and structured as to ensure the interpretability of the latent space. A common choice,
for example, is a vector of independent standard normal random variables. Complexity
arises from the conditional distribution, which can, for example, be defined using a neural
network fθ with parameters θ, yielding the deep generative model

z ∼ N (0, I)

x|z ∼ N (fθ(z), σ2I).

Here, fθ, similar to section 2.1, has the role of a decoder. We are, however, now able to
additionally model the uncertainty, in this case, by an isometric Gaussian. Conversely, if
we want to encode an observed x, we can compute the posterior p(z|x). This again allows
us to find the best latent encoding while also quantifying the prediction uncertainty. In a
sense, the posterior thus has the role of an encoder. Unfortunately, for more complicated
conditional distributions, the posterior is intractable due to the integral in

p(z|x) = p(x|z)p(z)
p(x) = p(x|z)p(z)∫

p(x|z)p(z) dx.

To circumvent this problem, we use variational inference to approximate the posterior,
selecting the best approximation from a family of simpler distributions Q. This family
can, for example, be a Gaussian family that is parameterised by a neural network with
parameters ψ, i.e. for each q ∈ Q there exists ψ with

qψ(z) = N (gψ(x), hψ(x)).

The exact details are left for later, but generally, we can first encode x into a meaningful
feature vector and then apply several linear layers to extract the needed parameters. In
the above case, if qψ is to be a vector of independent Gaussians, those are the elementwise
mean and standard deviations. Now, we need to find an appropriate q ∈ Q that best
represents the posterior. The quality of this approximation has to be measured by a
distance between two distributions. Here, it is very intuitive to use the Kullback–Leibler
(KL) divergence [5], which is based on considerations from information theory detailed in
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section 2.2.2. Defined through

KL(q ∥ p) := Ex∼q(x)[log q(x) − log p(x)] =
∫
q(x) log q(x)

p(x) dx, (2.2)

the KL divergence measures the efficiency of approximating p by q, essentially as the
amount of redundant information that q introduces. Thus, a good posterior approximation
is given by

q∗ = argminq∈Q KL(q ∥ pθ(z|x)). (2.3)

So far, we have described generation and inference but neglected to mention how to
select the parameters θ both are based on. If we want to fit this model to a dataset
X = {x1, x2, . . . , xN} with xi

iid∼ p(x), we need to maximize the marginal (log-)likelihood

log pθ(X) =
N∑
i=1

log pθ(xi) =
N∑
i=1

∫
log pθ(xi, zi) dzi =

N∑
i=1

∫
log pθ(xi|zi)p(zi) dzi

Similarly to the posterior, for the complicated conditional distributions needed in practice,
this marginal likelihood is intractable . To solve this problem, we introduce a lower bound
that is easier to estimate and optimize: the evidence lower bound (ELBO), which for a
posterior approximation q is defined as

Lθ(q) := Ez∼q

[
log pθ(x, z)

q(z)

]
.

Note that

log pθ(x) = Ez∼q[log pθ(x)] = Ez∼q

[
log pθ(x, z)q(z)

q(z)pθ(z|x)

]
= Lθ(q) + KL(q ∥ pθ(z|x)).

Therefore, log pθ(x) ≥ L(q, θ), as the KL divergence is always non-negative. Furthermore,
argmax(q,θ) Lθ(q) = (pθ∗(z|x), θ∗) with θ∗ = argmaxθ log pθ(x). Maximizing Lθ(q) thus
yields the same optimal parameters θ∗. Restricting the optimization to choices over
approximations q ∈ Q, we still obtain argmax(q∈Q,θ) Lθ(q) = (q̃, θ̃) with

log pθ∗(x) − log pθ̃(x) ≤ argminq∈Q KL(q ∥ pθ(z|x)). (2.4)

This can be seen by first fixing θ∗ and then selecting q∗ ∈ Q as in (2.3). By jointly
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optimizing both the encoder and decoder, the approximation error can only get smaller.
Generally, the error is small for a sufficiently expressive family Q. To find q̃ and θ̃ consider,
as a loss,

−Lθ(q) = Ez∼q

[
− log pθ(x|z)p(z)

q(z)

]
= Ez∼q[− log pθ(x|z)] + KL(q ∥ p(z)). (2.5)

Both terms on the right-hand side of (2.5) can be determined or estimated in a way
that allows for efficient minimization of −Lθ(q), e.g. through gradient descent. The
second term includes a KL divergence, which can, in most cases, be computed analytically.
For examples refer to section 2.2.1. The first term, containing an expectation, can be
estimated effectively with Monte-Carlo simulation by drawing samples from q. In practice,
taking only one sample per iteration suffices. To allow for back-propagation of gradients
not only through pθ(x|z) but also q, q(z) has to be re-parameterized, separating stochastic
and deterministic effects. For example, if z ∼ qψ(z) = N (gψ(x), hψ(x)), an equivalent
formulation would be z = gψ(x) +

√
hψ(x)w, w ∼ N (0, I), where

√
hψ(x) is chosen

to satisfy
√
hψ(x)

√
hψ(x)

T
= hψ(x). This is possible because the covariance matrix is

symmetric and positive semidefinite. Equation (2.5) is similar to the loss used for the
autoencoder in section 2.1. Indeed, the first term can be understood as a reconstruction
loss between x and its reconstruction

x′ = fθ(gψ(x) + w1) + w2,

w1 ∼ N (0, hψ(x)), w2 ∼ N (0, σ2I),

while the second term has the function of a regularizer, enforcing structure in the latent
space. This notion of structure is based on the prior used. For instance, an independent
prior like p(z) = N (0, I) encourages more disentangled latent representations. The trade-
off between reconstruction error and latent structure can be controlled by introducing a
regularization parameter β, and then finding

min
q,θ

Ez∼q[− log pθ(x|z)] + βKL(q ∥ p(z)),

which is the Lagrangian of, and therefore equivalent to,

min
q,θ

Ez∼q[− log pθ(x|z)]

s.t. KL(q ∥ p(z)) ≤ ϵβ.
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As β increases, ϵβ decreases and allows for less deviations from the intended structure.
This related formulation is called the β-VAE [6] and often arises naturally from the
generative model, giving additional interpretation to β. For an example see section 2.2.1.

For larger datasets it is not feasible to optimize log pθ(X) = ∑N
i=1 log pθ(xi) directly be-

cause computing θ̃i for every xi is very time consuming. Instead, amortized variational
inference can be used to find only one set of parameters θ̄ that works reasonably well
for all xi. The introduced amortization error is small when q̃ is expressive and flexible
enough to be able to find good latent parameters zi for every xi. How we can further
reduce the suboptimality in inference is still subject of ongoing research. Extensive anal-
ysis, for example by Cremer et al. [7] suggests that, generally, the approximation error
is smaller than the amortization error. This can be attributed to the fact that, as q and
θ are jointly optimized, the generator is able to adapt to the choice of approximation,
producing true posteriors pθ(z|x) that can be approximated with less error. In this case,
the approximation error might be drastically lower than the upper bound in (2.4). Addi-
tionally, the approximation error can be improved by allowing for a more expressive class
of approximations, for example, by using Normalizing Flows [8]. Cremer et al. showed
that this increased capacity also reduces the amortization error. Another set of techniques
that reduce the amortization error are iterative approaches, which during inference fur-
ther improve the amortized parameters through individual optimization of each q(xi) [9,
10].

2.2.1 VAE Loss for Gaussians

We will now take a more detailed look at (2.5), the loss used to train a VAE. As stated
above, it consists of two parts: the reconstruction loss Lrec(x) := Ez∼q[− log pθ(x|z)] and
the KL loss LKL(x) := KL(q ∥ p(z)), which acts as a regularizer. Consider the case already
discussed in section 2.2: a Gaussian model for generation with a Gaussian approximation
to the posterior:

z ∼ N (0, I)

x|z ∼ N (fθ(z), σ2I)

qψ(z) = N (gψ(x), hψ(x))

(2.6)
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We derive both loss terms for this common example, which is also highly relevant to our
method. The reconstruction loss can be estimated with

Lrec(x) = 1
2σ2 Ez∼q

[
∥x− fθ(z)∥2

2

]
+ d

2 log (2πσ)

= 1
2σ2 Ew∼N (0, I)

[∥∥∥∥x− fθ(gψ(x) +
√
hψ(x)w)

∥∥∥∥2

2

]
+ const

≈ 1
2σ2

m∑
j=1

∥∥∥∥x− fθ(gψ(x) +
√
hψ(x)wj)

∥∥∥∥2

2
+ const,

where in the last step we introduced samples wj iid∼ N (0, I). Together with an iterative
optimization technique, setting m = 1 suffices and allows us to optimize instead, by
dropping the constant,

L̂rec(x) := 1
2σ2 ∥x− x′∥2

2

x′ = fθ(gψ(x) + w1)

w1 ∼ N (0, hψ(x)).

(2.7)

Comparing (2.7) with (2.1), this further illustrates how the VAE closely extends the ideas
of the traditional autoencoder. Moreover, due to the multiplicative nature of σ2, we can
see that this VAE is equivalent to a β-VAE with σ2 = 1 and β = σ2. This contextualizes
the reconstruction-structure trade-off inherent to the VAE formulation: Higher values of
β encourage better latent structure but also decrease reconstruction quality, expressed
here directly as increased generational uncertainty.

To find the regularizer LKL we have to derive the KL divergence between two Gaussians.

Theorem 2.1
Let p1 = N (µ1,Σ1) and p2 = N (µ2,Σ2) be d-dimensional Gaussian distributions, then
their KL divergence is given by

KL(p1 ∥ p2) = 1
2

(
log |Σ2|

|Σ1|
+ trace{Σ−1

2 Σ1} + (µ2 − µ1)TΣ−1
2 (µ2 − µ1) − d

)
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Proof.
The density of a multivariate Gaussian X ∼ N (µ,Σ) is given by

p(x) =
(
(2π)d|Σ|

)−1/2
exp

(
−1

2(x− µ)TΣ−1(x− µ)
)

Thus,

KL(p1 ∥ p2) = Ex∼p1

[
log p1(x)

p2(x)

]

= 1
2 log |Σ2|

|Σ1|
+ 1

2 Ex∼p1

[
(x− µ2)TΣ−1

2 (x− µ2) − (x− µ1)TΣ−1
1 (x− µ1)

]
= 1

2 log |Σ2|
|Σ1|

+ 1
2 Ex∼p1

[
(x− µ2)TΣ−1

2 (x− µ2)
]

− 1
2 trace

{
Ex∼p1

[
(x− µ1)(x− µ1)T

]
Σ−1

1

}
.

The statement follows using the identities E[xTAx] = E[x]TAE[x] + trace{AE[xxT ]} and
E[xxT ] = Cov[x].

Corollary 2.2
For d = 1, i.e. p1 = N (µ1, σ

2
1) and p2 = N (µ2, σ

2
2), we have

KL(p1 ∥ p2) = log σ2

σ1
+ σ2

1 + (µ1 − µ2)2

2σ2
2

− 1
2 .

Thus, as the KL Loss, we obtain

LKL(x) = KL(N (gψ(x), hψ(x)) ∥ N (0, I))

= 1
2
(
− log|hψ(x)| + trace{hψ(x)} + ∥gψ(x)∥2

2 − d
)
.

If the elements of X ∼ N (gψ(x), hψ(x)) are constructed to be independent, with Xi ∼
N (gψ(x)i, hψ(x)2

i ), then hψ(x) = Diag(hψ(x)2
1, . . . , hψ(x)2

d), and

LKL(x) =
d∑
i=1

LKL(xi) =
d∑
i=1

− log hψ(x)i + hψ(x)2
i + gψ(x)2

i

2 − 1
2 .
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2.2.2 KL Divergence and Mutual Information

As briefly mentioned above, the KL divergence KL(q ∥ p) measures the amount of redun-
dant information when we approximate p with q. To make this statement more precise,
we first quantify the information of a distribution by its entropy

H(q) := Ex∼q(x)[− log q(x)] =
∫

−q(x) log q(x) dx.

This definition goes back to Shannon [11] and is best understood in the context of optimal
binary encodings: If we need to encode symbols whose occurrences can be modeled with
a discrete distribution, than a symbol x which occurs with probability q(x) should have
an encoded length of roughly − log q(x) bits. More frequent symbols have shorter codes.
Here, entropy is the average amount of bits we need to encode x ∼ q(x). In addition
to contained information, entropy can also be understood as the uncertainty of data.
Entropy is highest for uniform distributions where all possibilities are equally likely. If we
know that some events are far more likely, the entropy is lower, and if only one outcome
is possible, the entropy reaches the lowest possible value of 0. In the context of machine
learning, we are often interested in how good a distribution represents an underlying true
distribution. Mathematically this is made precise with the cross-entropy

Hp(q) := Ex∼q(x)[− log p(x)] =
∫

−q(x) log p(x) dx.

We again consider the context of binary encoding. Here, the cross-entropy is the aver-
age amount of bits we need to encode x ∼ q(x), using codes that are optimal for p(x).
If q(x) is similar to p(x) the encoding is still efficient, but if frequently occurring sym-
bols in q(x) are much less likely in p(x) the encoding is far from optimal. Being able to
quantify representation quality is extremely useful and many machine learning applica-
tions use cross-entropy minimization. The (binary) cross-entropy between two binomial
distributions, for instance, is a very common loss in binary classification. Cross-entropy
can also be used to quantify the quality of a distribution approximation. Indeed the KL
divergence, defined in (2.2) for the same reason, is only a shifted cross-entropy with the
property that KL(q || p) = 0 iff p is equal to q:

KL(q ∥ p) =
∫

−q(x)
(

log p(x) − log q(x)
)
dx = Hp(q) − H(q).
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Having made precise the notion of information, we might also be interested in the infor-
mation that is shared by two distributions. This will allow us to define a way to measure
general correlation, beyond the simple linear correlation quantified by the Pearson corre-
lation ρ. The common information of two distributions is defined by the joint entropy,
the entropy of the joint distribution mp,q, and never exceeds the marginal entropies:

H(p, q) := H(mp,q) ≥ max(H(p),H(q))

If p and q are independent, H(p, q) = H(p) + H(q), as the joint distribution is factorised:
mp,q(x, y) = (p⊗ q)(x, y) = p(x)q(y). The conditional entropy

H(p | q) := H(p, q) − H(q) =
∫

−mp,q(x, y) log mp,q(x, y)
q(y) dx dy

measures the information of p that cannot be explained through q. Subtracting the non-
shared information, we can, finally, define the mutual information:

I(p, q) = H(p, q) − H(p | q) − H(q | p) =
∫
mp,q(x, y) log mp,q(x, y)

p(x)q(y) dx dy.

As H(p) = I(p, q) + H(p | q), this also allows us to separate already explained and new
information. Note that I(p, q) = KL(mp,q ∥ p⊗ q), illustrating that mutual information is
the additional information that is not explained under the assumption of independence.

2.3 LSTM

There are several types of neural networks suitable for work with time series. Fully
Connected (Feed-Forward) Neural Networks, Convolutional Neural Networks, and also
Reccurent Neural Networks (RNN), a broad class of networks that are well suited to model
the temporal and dynamic behaviour of time series. A particularly useful kind of RNN
is Long Short-term Memory (LSTM) [12], which is capable of learning dependencies even
over long distances. Generally, a RNN processes data sequentially, keeping an internal
state, which allows the network to remember past inputs. After initializing the internal
state to s0 the output is obtained via

ht, st = fθ(xt, st−1),
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Figure 2. The LSTM architecture as described by Hochreiter et al. [12].

where ht and st are the output and internal state at time t, respectively. In LSTMs there
are two forms of recurrence. First, the most recent output is used as an input in the next
time step, allowing for short-term memory; second, there is an internal state which can
be written to and read from, allowing for long-term memory. With h0 and c0 initialized,
e.g. to 0, the LSTM is defined by,

ft = σ(Wf [xt, ht−1]T + bf )

it = σ(Wi[xt, ht−1]T + bi)

ot = σ(Wo[xt, ht−1]T + bo)

c̃t = tanh(Wc[xt, ht−1]T + bc)

ct = ft ⊙ ct−1 + it ⊙ c̃t

ht = ot ⊙ tanh(ct),

which is also illustrated in figure 2. One LSTM cell consist of 4 linear layers with sigmoid
and hyperbolic tangent non-linearites. ft controls how much of the internal state is for-
gotten and it how much of the proposed changes c̃t are remembered. Finally, ot controls
which parts of the memory are relevant in this time step and need to be output. At
the time, LSTMs massively improved the state-of-the-art in many tasks, including speech
recognition, machine translation, and time series prediction [13, 14]. BiLSTM [15], a bidi-
rectional variant, combines the results of a forward and a backward pass by two different
LSTMs and thus attends to the full context from both the past and the present.
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2.4 Transformer

Another kind of neural network is the transformer. First described in 2017, in the seminal
work by Vaswani et al. [16], this architecture has been proven to be both very powerful
and flexible, advancing the state-of-the-art in many different tasks on text, images and
beyond [17]. Based on the mechanism of self-attention, transformers avoid a lot of the in-
ductive biases found in other neural networks, for example the locality inherent to CNNs.
This generally leads to slower convergence but highly expressive, less biased models. Orig-
inally, transformers were designed to handle sequential data, similar to RNNs. Because
transformers are permutation-invariant, they require an embedded representation of the
data X, Xt· ∈ Rd that also encodes position. This information can be included by adding
a learned or designed positional encoding P , e.g.

Pt,i =

sin(t/10 3i
d ) if imod 2 = 0

cos(t/10 3i
d ) else

. (2.8)

The transformer architecture is mainly composed of two components: feed-forward layers
and Multi-Head Attention. The latter is based on the (masked) Scaled Dot-Product
Attention, which, given a set of keys K, values V and Queries Q, is defined as

Attention(K,V,Q) := softmax
(
M ⊙ QKT

√
dk

)
V,

where dk is the dimension of keys and queries and M is a mask that can prevent the query
Qt· from accessing all values. This is essential in auto-regressive tasks like prediction and
translation, where the query only considers the previous values Vt′·, t′ < t. Multi-Head
Attention combines h attention heads that act on smaller learned subspaces with

MultiHead(K,V,Q) := [HT
1 , . . . , H

T
h ]TWO,

Hi = Attention(KWK
i , V W

V
i , QW

Q
i ).

Each feed-forward layer combines two linear layers with a ReLU non-linearity, i.e.

FFN(X) := max(0, XW1 + b1)W2 + b2.

Based on these blocks, the original transformer architecture [16] consists of a transformer
encoder and a transformer decoder, each with N repeating transformer layers, as illus-
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Figure 3. The transformer architecture as described by Vaswani et al. [16]. The model
consists of two parts: the transformer encoder (below) and the transformer decoder
(above).

trated in figure 3. The former encodes the inputs into a meaningful representation while
the latter decodes this information and predicts the next-step output given all previous
outputs. In many applications, the decoder is not needed and outputs are directly ex-
tracted from the learned representation. As can be seen, Multi-Head Attention is used
in two ways: as self-attention with K = V = Q and as encoder-decoder attention where
both K = V come from the decoder. To speed up training and avoid the problem of
vanishing and exploding gradients, Layer Normalization [18] is used.
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Chapter 3

Related Work

In this chapter we review relevant works from the field of (Neural) Style Transfer. We
start by formulating style transfer as an optimization problem based on the content and
style loss. Then follows a thorough review of image and text style transfer methods,
including iterative and non-iterative approaches. Next, we discuss the available work on
style transfer with time series. The chapter ends with a a brief introduction to the concept
of disentangled representations and a survey of relevant transformer models.

3.1 Style Transfer

Style transfer is an inherently vague and ambiguous task. Before discussing different
methods, we have to first formulate it mathematically by making precise the notion of
style and content. This, of course, highly depends on the application and the kind of
data. Informally, style can be defined as the distinctive characteristics inherent in (a
set of) data, setting it apart from other data of the same kind. In text, this might be
tone, choice of words, punctuation or sentiment; in images this might be composition,
medium or color palette. There are two main ways of formalization: feature-based and
distinction-based. The former, more commonly used approach, focuses on finding the
characteristic features that define style in the desired application. Differences in style
are then defined by differences in those features, and quality of stylized generation by the
ability to match those features. The latter, on the other hand, focuses more broadly on the
distinctiveness of style. Differences in style are then defined by the ability to distinguish
between two styles, and the quality of stylized generation by its indistinguishability from
real style samples. Many distinction-based methods use adversarial training, for example,
Generative Adversarial Networks (GANs).
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3.1.1 Image and Text Style Transfer

For now, we focus on style transfer with images and text, where style transfer is best
understood and described. Many ideas, however, also generalize to different kinds of
data, for example, to time series, as we discuss in section 3.1.2. Style transfer was first
proposed on images. Here, some early feature-based methods were based on handcrafted
features, e.g. hue and saturation [19], but their applications were limited. With the
advent of learned features, which were first proposed by Gatys et al. [1] in 2016, stylized
generation became feasible for more complex style transfer tasks. Furthermore, it allowed
for indirect specification of the target style by providing style samples. Based on features
from a CNN that was pre-trained on image classification, Gatys et al. define two losses

Lc(x, y) ∝
∑
i

∥ϕi(x) − ϕi(y)∥2
2 (3.1)

Ls(x, y) ∝
∑
i1

∑
i2

∥∥∥ϕi1(x)Tϕi2(x) − ϕi1(y)Tϕi2(y)
∥∥∥2

2
,

which measure similarity in content and style, respectively. Here, ϕi(x)j is the activation
of feature ϕi at position j of image x. If ϕi is a feature of a later convolutional layer it can
detect high-level concepts, for example, doors or windows. Then, ϕi(x) captures where
in the image these objects are located. Intuitively, in images that are close in content,
the location of these objects is similar, which in turn, yields similar feature activations.
Conversely, ϕi1(x)Tϕi2(x), captures the interactions between pairs of features over the
whole image. If its absolute value is high the concepts detected by ϕi1 and ϕi2 often
occur together. This information reveals abstract properties that are not related to image
content. If, for example, leaves and the color orange have a high co-occurrence, this
likely means that the image was taken in fall. If we consider style in the artistic sense, it
makes sense to compare the interactions of low-level features that are detected in earlier
convolutional layers, since they might correspond to concepts like color, texture or brush
stroke. Co-occurrences, however, are not the only way to formalize the notion of style.
Any higher-order feature statistic could be a potential candidate. AdaIN [20] uses

Ls ∝
∑
i

∥µ(ϕi(x)) − µ(ϕi(y))∥2
2 + ∥σ(ϕi(x)) − σ(ϕi(y))∥2

2 (3.2)

arguing that style is best described by the presence and absence of features. If, for exam-
ple, a painting mostly consists of straight black lines without any rounded corners, these
concepts are detected more (or less) frequently. Thus the style information is represented
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well by the corresponding feature means and standard deviations. Note that the losses
defined above can be used for more than just images, as long as suitable features are
designed or learned. After choosing appropriate features, content loss, and style loss, we
can formulate style transfer as an optimization problem: Given a data sample x and a
style distribution p(s), find the stylized sample

y′ = min
y
λcLc(x, y) + λs Es∼p(s) [Ls(s, y)] ,

which is close in style to s ∼ p(s) while still preserving the content of x. Here λc and λs

are hyperparameters that allow for control over the trade-off between content preservation
and stylization. The above expectation can be approximated by

y′ = min
y
λcLc(x, y) + λs

Ns∑
i=1

Ls(si, y) (3.3)

if a set S = {s1, . . . , sNs} of Ns ≥ 1 style samples si iid∼ p(s) is given. Usually, only one
sample suffices. There are many different approaches to find solutions to (3.3) or similar
optimization problems. A detailed review of relevant style transfer methods is given by
Jing et al. [21]. Generally, the approaches fall into two categories: data-based and model-
based. Data-based methods optimize (3.3) directly. Gatys et al. [1], for example, initialize
y randomly and use gradient descent with back-propagated gradients. This is slow, as it
needs to be repeated for every new generated sample. Model-based approaches, on the
other hand, generate stylized samples directly, training an end-to-end model with data
samples x ∼ p(x). Either, with a fixed style, through y′ = fθ(x) and via

min
θ

Ex∼p(x)

[
λcLc(x, fθ(x)) + λs

Ns∑
i=1

Ls(si, fθ(x))
]
. (3.4)

or, with arbitrary style, through y′ = fθ(x, S) and via

min
θ

Ex∼p(x)

[
λcLc(x, fθ(x, S)) + λs

Ns∑
i=1

Ls(si, fθ(x, S))
]
. (3.5)

After initial training this allows for fast, real-time style transfer. On images, arbitrary
style transfer has been implemented, for example, with CNNs [2, 20] and with transformers
[22]. Inspired in part by the promising results of image style transfer, many methods have
been proposed on other kinds of data. For text data, available methods are reviewed
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thoroughly, for example, by Jin et al. [23]. Because style in text is less distinct than
in images, it is usually extracted from a larger a corpus of texts. Thus, most methods
tackle fixed style transfer as in (3.4). When we have parallel data, i.e. pairs (xi, yi) an
end-to-end model can be trained directly via

min
θ

N∑
i=1

L(yi, fθ(xi)),

where L is a task-specific reconstruction loss, for instance, a weighted sum of the above
content and style loss. While parallel datasets are rare for images, in text they are available
for a few transfer tasks between, among others, informal and formal [24], complicated and
simple [25], or biased and neutral [26] language. Nonetheless, there are many tasks where
only non-parallel data is available. In this setting, a recent approach [27] cascades two
transformers in an encoder-decoder setup, first pre-training with a cloze task and then
finetuning on the target style corpus. Through this training procedure, the decoder learns
to generate stylized text based on the abstract representation encoded by the encoder,
even when we input new text samples of a different style.

More directly and also without the need to define features, distinction-based style trans-
fer methods try to generate stylized data that is indistinguishable from real data. For
example, we might have access to a discriminator D that predicts the probability of data
belonging to the style distribution p(s) and want to train our generator, a neural network
Gθ, to produce stylized versions of its input x ∼ p(x), i.e. y′ = Gθ(x). In this case, we
can train Gθ, for example, by finding

min
θ

Ex∼p(x)[log(1 −D(Gθ(x)))].

Generally, such a discriminator is not available or easy to break in unintended ways.
GANs therefore use adversarial training, jointly training a discriminator Dψ with

min
θ

max
ψ

Es∼p(s)[log(Dψ(s)] + Ex∼p(x)[log(1 −Dψ(Gθ(x)))]

until an equilibrium is reached. Ideally, Dψ should then no longer be able to distinguish
between s ∼ p(s) and y′ = Gθ(x), x ∼ p(x). One prominent example of a GAN that
performs image style transfer on non-parallel data is CycleGAN [28], which also trains an
inverse mapping Fθ and enforces the cycle consistencies Fθ(Gθ(x)) = x and Gθ(Fθ(y)) = y.
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3.1.2 Time Series Style Transfer

Thus far, the application of style transfer methods to time series has been very limited.
Most approaches adopt feature-based methods from image style transfer, for example by
directly transforming time series to images [29]. This is not very promising in general,
as features trained on image classification are not well-suited for most time series ap-
plications. When using a perceptual loss such as (3.1) the choice of features is crucial.
El-Lahman et al. [30] propose to use hand-crafted features, specifically designed to their
application in finance. They define content by a running average that captures the trend
and formalize style over the autocorrelation of the log-returns, volatility, and the power
spectral density. Da Silva et al. [31] use learned features that are obtained via a denois-
ing autoencoder trained on the source dataset x ∼ p(x). Both methods are data-based,
iteratively improving a random initialization with back-propagated gradients.

When samples of the target style are abundant, stylized time series may be generated
directly, for example with VAEs [31, 32] or GANs [33, 34]. This, however, sacrifices
control over the content. Another way to transfer style is to use an autoencoder with a
disentangled representation. Broadly speaking, if the latent space fully separates content
and style with

x′ = fθ(gcψ(x), gsψ(x)),

the style latent variable zs = gsψ(x) can be substituted, during inference, by an encoded
style sample s ∼ p(s) with

y′ = fθ(gcψ(x), gsψ(s)),

which changes the style of the generated data. For high-dimensional time series such
as video and speech, disentanglement can be obtained with a Disentangled Sequential
Autoencoder (DSAE) [35], a VAE that splits the time series into global information (style)
and time-dependent dynamics (content). If the dimension of the latent space encoding
the dynamics is small enough, a good reconstruction is only possible by storing the time-
invariant information in the latent space that encodes the global information. After careful
calibration this enforces a disentanglement that allows for inference-time style transfer.
Disentanglement can also be obtained more directly by introducing a regularizer that
penalizes entanglement, for example, quantified using the mutual information [36].
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3.2 Transformer

Transformer models have advanced the state-of-the-art in many applications [17] and
achieve performance unparalleled by other architectures. In particular on text-based nat-
ural language processing (NLP) tasks, where they have been first proposed, they have
become the de-facto standard. Here, GPT [37] and BERT [38] are powerful and flexible
models that allow for rapid development to new applications by pretraining a transformer
encoder on an enormous corpus of text. This encoder provides a task-independent repre-
sentation of the data which can be leveraged by subsequently training smaller task-specific
heads. GPT-3 [39], a more robust and more powerful successor to GPT has a staggering
175 billion parameters and excells in many NLP tasks, including but not limited to, ques-
tion answering, essays writing, text summarization, translation, and guided generation
of specific text like computer code [40]. Transformers have also been adapted for many
computer vision tasks. In lieu of learned word embeddings, embedding techniques based
on CNNs are used. Han et al. [41] and Khan et al. [42] provide detailed reviews of
possible applications. These include, for example, classification [43], image segmentation
[44], object detection [45], and image generation from text descriptions [46, 47]. Pretrain-
ing on a large image dataset can again be useful to reduce time and data requirements
by providing a highly informative representation, for instance with iGPT [37]. Use of
transformers in time series tasks is thus far mostly limited to regression, classification,
time series forecasting, and their applications [48–50]. Here, the embeddings needed for
the transformers are obtained by linear projection.
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Chapter 4

Method

In this chapter we present our proposed style transfer method: a variational autoencoder
with disentangled latent space that is fast and well-suited for style transfer tasks involving
time series. We begin with a detailed discussion of both the deep generative model our
method is build on, and the model architecture. Then, we detail how stylized samples are
obtained through disentanglement. We conclude by describing our training procedure.

4.1 Generative Model

We need a generative model that allows for fine control and sufficiently complex genera-
tion. Thus, a variational autoencoder with a deep generative model is a sensible choice.
The commonly used Gaussian model (2.6), however, is not suitable for style transfer tasks,
because it entails minimizing a MSE Loss, as shown in section 2.2.1. Reconstruction and
generation thus focus heavily on content preservation, accurately capturing the general
trend but ignoring stylization. Generally, the reconstruction loss effects which properties
of the reconstruction are prioritized. This makes a careful choice essential. A suitable
reconstruction loss for stylized generation is the perceptual loss

L(x, x′) := λcLc(x, x′) + λsLs(x, x′).

It considers both content and style alignment and allows for fine control with the weights
λc and λs. The choice of a generative model for our VAE is similarly important. We
want to select a corresponding model that allows for the same emphasis and control over
stylized generation. To find this generative model, consider the more general

z ∼ N (0, I)

η(x)|z ∼ N (f ′
θ(z), σ2I).
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Here, a conditional distribution pθ(y|z) of the transformed data y = η(x) is given. If η
is continuous and invertable this uniquely defines the conditional distribution pθ(x|z) by
setting g = η−1 in the following proposition. If for example η = log, then pθ(x|z) has a
log-normal distribution.

Proposition 4.1
Let y be an absolutely continuous random variable with density fy. If g is continuously
invertable then x = g(y) is also absolutely continuous with density

fx(x) = fy(g−1(x))
∣∣∣∣∣ ddxg−1(x)

∣∣∣∣∣.

If η is not invertable the unique existence of pθ(x|z) cannot be guaranteed. However,
if η is approximately invertable instead, i.e. if there exists an approximation η̃−1 with
x̃ := η̃−1(η(x)) ≈ x, then the distribution p(x̃|z) is close to any potential p(x|z). Whereas
in the model (2.6) samples of the conditional distribution are obtained with

x′ = fθ(zj) + w, w ∼ N (0, σ2I),

we now sample from the (approximate) conditional distribution p(x̃|z) with

x′ = η̃−1(η(fθ(zj)) + w), w ∼ N (0, σ2I),

where we have additionally set f ′
θ(z) = η(fθ(z)). The former adds noise directly to our

observation. This has a profound negative impact, because noisy samples, which have
a different style, are modeled with a high likelihood. Conversely, the latter adds more
complex noise by varying abstract properties. Instead of a smooth and blurry fθ(z) that
averages out potential reconstructions, we obtain a sample fθ(z) that has average features,
in a way, the most representative reconstruction possible. Intuitively, if η encodes content
and style features this puts high likelihood on samples with similar content and style.
To find good parameters θ, we maximize the likelihood pθ(η(x)|z) as in section 2.2 by
approximating the posterior pθ(z|η(x)) with qψ(z) = N (gψ(x), hψ(x)). Thus, we minimize

min
θ,ψ

L̂rec(x) + LKL(x) = 1
2σ2

m∑
j=1

∥η(x) − η(fθ(zj))∥2
2 + KL(qψ ∥ p(z)).
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Recall that fθ(zj) is not a direct reconstruction of x but instead an indirect reconstruction
with matching properties close to η(x). If η is approximately invertable, this also implies
fθ(z) ≈ x. To relate this model back to the style transfer task, we specify η(x) based on
(convolutional) feature activations ϕi(x), 1 ≤ i ≤ Nϕ. Specifically,

ηcij(x) = ϕi(x)j

and

ηsj (x) =

µ(ϕi(x)), j = i if 0 < j ≤ Nϕ

σ(ϕi(x)), j = 2i if Nϕ < j ≤ 2Nϕ

.

We discuss feature choice more thoroughly in section 5.8.1, but briefly note here that for
convolutional features that are learned by a neural autoencoder, η = [ηc, ηs] is approxi-
mately invertable. Finally, we propose the deep generative model

z ∼ N (0, I)

ηc(x)|z ∼ N (ηc(fθ(z)), σ2
cI)

ηs(x)|z ∼ N (ηs(fθ(z)), σ2
sI)

qψ(z) = N (gψ(x), hψ(x))

(4.1)

which we can fit to a dataset X = {x1, x2, . . . , xN} by minimizing the β-VAE loss

1
N

N∑
i=1

min
θ,ψ

λcLc(xi) + λsLs(xi) + λKLLKL(xi), (4.2)

where, as in (3.1) and (3.2) and with z ∼ qψ(z),

Lc(x) =
∑
i

∥ϕi(x) − ϕi(fθ(z))∥2
2

Ls(x) =
∑
i

∥µ(ϕi(x)) − µ(ϕi(fθ(z)))∥2
2 + ∥σ(ϕi(x)) − σ(ϕi(fθ(z)))∥2

2.

The loss (4.2) shows that (4.1) indeed is the corresponding model we have been looking for,
allowing for fine control over the relative importance of content, style, and latent structure.
Note that following the discussion in section 2.2.1, the above β-VAE formulation with
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β = λKL is equivalent to a VAE formulation with

σ2
c = λKL

λc
and σ2

s = λKL

λs
.

Higher values of λs and λc thus encourage increased reconstruction quality through de-
creased feature variation, but also cause a less structured latent space. In the following
we scale the weights with

λ′
c = λc

d
, λ′

s = λs
d
, λ′

KL = λKL

dlatent

to make them less dependent on d and dlatent, the dimension of the data and the latent
space, respectively.

4.2 Model Architecture

To complete the specification of the VAE model discussed in the previous section, we have
to define the encoders gψ and hψ, and the decoder fθ. We use transformer models for
all three. This allows our model to attend to long range dependencies in the data, and
therefore to quickly generate correctly stylized time series even for complex styles. An
overview of our model architecture can be found in figure 4. Similar to GPT [51] and
BERT [38] models, we only use a transformer encoder, consisting of Nl transformer layers.
Because we want to consider the full bidirectional context at each position we do not mask
any connections in the self-attention layers. Following an analysis by Xiong et al. [52], we
change the position of the layer normalization. Normalizing before applying the attention
and feed-forward layer makes transformer training more stable and less dependent on the
learning rate schedule. Before we can propagate ourm-dimensional time series x ∈ Rdlen×m

through the transformer architecture, we first have to embed it into a higher-dimensional
representation x̄ ∈ Rdlen×dmodel . In recent works [48, 49] that apply transformer to time
series, a simple linear projection is used. We found that additionally encoding context
information using a convolution vθ with a small kernel size of 5, improves training speed
significantly. To this representation we add positional information with the sinusoidal
positional encoding P from equation (2.8).

Similar to DSAE [35], our model allows for style transfer by disentangling content and
style in the latent space. The latent space thus consists of a time-dependent compo-
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Figure 4. The proposed transformer architecture. The model consists of three parts: two
variational encoders (above) and the variational decoder (below). A query token q is
appended only for the style encoder.

nent zc ∈ Rdlen×dc
latent for content and a time-invariant component zs ∈ Rds

latent for global
style information. We approximate the joint posterior with independent Gaussians, i.e.
hψ(x) = Diag(hψ(x)2

1, . . . , hψ(x)2
d). To reduce the computational burden and to make our

model more efficient, we use only one transformer gψ per component to jointly learn both
the mean and the standard deviation of the latent variables. For the time-dependent zc

the parameters are obtained through a linear projection of the learned transformer rep-
resentation at the respective position; for the time-invariant zs a query-based approach
similar to Carion et al. [45] is used. To this end, we append an all-zero query token
q ∈ Rdmodel to the beginning of the embedded time series. Additionally, each vector in
the embedding is extended to include a query flag in its last position. This flag is set to
1 for the token and 0 everywhere else. Now, the transformer architecture can learn to
encode all relevant global information in the representation at the query position. After
a pass through the transformer, the latent parameters can be extracted from the query
result with a linear projection. After sampling from the posterior, the latent variables
are again embedded with a linear projection and positional encoding. To summarize, one
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pass through our model is computed with

x̄ = vψe(x)We + be + P

zci = gψc(x̄)i·W c
m + bcm +

(
gψc(x)i·W c

v + bcv
)
wc, wc ∼ N (0, I)

zs = gψs(x̄q)1·W
s
m + bsm +

(
gψs(x)i·W s

v + bsv
)
ws, ws ∼ N (0, I)

z̄ = [zci , zs]T Wz + bz + P

x′ = fθo(z̄)Wo + bo.

This, we abbreviate by

[zc(x), zs(x)] ∼ qψ(x)

x′ = fθ(zc(x), zs(x))

with marginals zc(x) ∼ qcψ(zc|x) and zs(x) ∼ qsψ(zs|x), and parameters

ψ = [ψe, ψc, ψs,We,W
c
m,W

c
v ,W

s
m,W

s
v , be, b

c
m, b

c
v, b

s
m, b

s
v]

θ = [θo,WzWo, bz, bo].

In addition, we also need to find good values for the model hyperparameters

ϑ = [Nl, Nh, dmodel, dff , d
c
latent, d

s
latent],

which include the number of layers Nl, the number of attention heads Nh, and the di-
mensions d, dff , d

c
latent, and dslatent of the model, the hidden feed-forward layer, the content

latent space, and the style latent space, respectively. As in the time-series-based In-
former [49], we set Nh = 8. We optimize the remaining hyperparameters with Bayesian
hyperparameter tuning. Details are discussed in section 5.4.1.
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Figure 5. A sketch of latent swapping during training and inference.

4.3 Disentanglement and Inference

After training our transformer model, we aim to perform style transfer by swapping in a
different style latent variable. For a time series x and a style sample s, we compute

[zc(x), zs(x)] ∼ qψ(x)

[zc(s), zs(s)] ∼ qψ(s)

y′ = fθ(zc(x), zs(s)).

(4.3)

The sample y′ is a good solution to the style transfer problem (3.5) if both

Lc(x, y′) and Ls(s, y′)
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are small. To guarantee this, our model has to achieve two things. First, qψ has to
separate and encode all relevant content and style information in the respective latent
variables, and second, fθ has to properly use all this encoded information. This is the
case, for example, when reconstruction quality is high, and content and style are properly
disentangled in the latent space. Intuitively, since x′ = fθ(zc(x), zs(x)) then contains the
same content and style information as x, zc(x) must contain the content information and
zs(x) must contain the style information. Even in cases where we are only able to obtain
imperfect disentanglement, our method may still produce accurately stylized samples, as
long as fθ ignores all residual style information in zc(x) and content information in zs(x).

There are several techniques to obtain disentanglement, but they are either not applicable
in our setting or do not account for the more general case where the concepts of content
and style are not fully independent. The mutual information I(qcψ(zc|x), qsψ(zs|x)) is a
suitable metric to measure the disentanglement in the latent space. If it is close to zero,
zc(x) contains no information about zs(x) and vice versa. This motivates the use of
the mutual information as an additional regularizer. The high-dimensional integrals are,
however, hard to estimate accurately and do not provide a solution for the general case.
Careful calibration of the latent space dimensions similar to DSAE [35] is also not feasible,
because even the smallest latent space with dclatent = 1 and dslatent = 1 might still not be
restrictive enough for the univariate or low-dimensional time series we intend to work
with.

Instead we propose a new method of active disentanglement, guided by the two separate
loss functions unique to the style transfer task. We perform latent swapping as in (4.3)
during training and adapt the loss in (4.2) accordingly: For x′ = fθ(zc(x1), zs(x2)) we
compute Lc(x′, x1) and Ls(x′, x2). This has two advantages. First, we directly optimize
the style transfer problem (3.5), which justifies our approach mathematically, and second,
we tailor our disentanglement to the specific notion of content and style implicitly defined
through the content and style loss. Indeed, zc(x1) and zs(x2) only need to learn to store the
specific content and style information that is relevant for generation of x′. Note that this
technique also works in the more general case where zc(x1) and zs(x2) contain undesired
residual information because fθ learns to actively ignore this additional information.

Lastly, we briefly discuss some further improvements that can be made during inference.
One technique that improves the quality of generated samples is iterative optimization.

32



Exactly like data-based methods, we can try to get closer to the optimal solution of (3.3)
by using gradient descent with back-propagated gradients. Here, a few iterations suffice
due to the excellent initialization. This allows us to combine the advantages of data-
based methods with the speed and flexibility of model-based approaches. Conceptually,
this decreases the inherent amortization error of the VAE discussed in section 2.2. We
explore the effect of additional iterations in more detail in section 5.8.4.

Additionally, during evaluation, we can set z(x) = E[qψ(x)] and directly use the mean of
the posterior approximation qψ instead of sampling from it. This may further improve the
quality of the generated time series as we use the best available estimate for the latent
variables. Note that on the other hand, if we are interested in more samples with slight
variation in content or style or both, we can decode additional posterior samples. Finally,
if we want to use more then one style sample, we can compute the mean of their style
latent representations, i.e.

zs(S) := 1
Ns

Ns∑
i=1

zs(si).

This decreases the effect of outliers found in style samples by focusing on characteristics
that are present across all samples.

4.4 Pretraining

Transformer models are very flexible and powerful but they also need a lot of training
data, in particular, big models like GPT and BERT [38, 51]. Therefore, these models
are first trained on an unsupervised tasks with an enormous unlabeled dataset. Although
our transformer model is much more compact, proper pretraining still has the potential
to improve performance and to decrease the required amount of data significantly [53].
Before we train our model on the main style transfer task, we train on unsupervised
generative tasks. Unlike text- and image-based transformers, pretraining on a big task-
invariant dataset is not feasible, due to the large diversity of time series from different
domains. Instead, we use all available domain-specific training data, including all style
samples that are used in the subsequent training. To this end, we adapt ideas from the
BERT pretraining procedure which involves a cloze task in which the model learns to
predict masked words and randomly substituted words.

Similar to Denoising Autoencoders (DAE) [54], we train our VAE to reconstruct the
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original time series from corrupted inputs. In our case, the inputs are corrupted by
masking and adding noise to chunks of a fixed length at random positions. Specifically,
following the BERT paper, we mask each chunk with a probability of 16%, and add zero-
mean standard Gaussian noise to it with a probability of 2%. To mask a position of
our input we set the embedded representation to an all-zero mask token, exactly like the
query token in section 4.2. Again, we extend every vector in the embedding by a flag that
is set to 1 for masked positions and 0 everywhere else. After this initial pretraining step,
our model should be able to accurately reconstruct any of the domain specific inputs.

In the second phase of our pretraining procedure we now also include the latent swapping
discussed in section 4.3. Specifically, for each batch of training data, we compute the
content and style latent variables as usual and then randomly permutate the style latent
variables before decoding the latent representation. This pretraining step guides our
model to already enforce the disentanglement of content and style. Essentially, our model
is now able to perform style transfer across the complete training data. However, in the
majority of style transfer applications we have discussed so far, the style dataset is much
smaller than the whole dataset and our model thus probably is not yet able to perform
the desired style transfer task with the desired accuracy. Nonetheless, this pretraining
provides a great initialization that we subsequentially finetune on the main objective.
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Chapter 5

Experiments

In this chapter we test the effectiveness of our style transfer method in extensive experi-
ments both on synthetic data and on real data from the domains of finance and speech.
First, we introduce the baselines and metrics we use to put our results into context. Then
follows a description of the datasets and training procedure. Next, we detail the exper-
imental setups and present the results, which we discuss thoroughly. The chapter ends
with an evaluation of the importance of feature choice, style loss and weights, and number
of iterations.

5.1 Baselines

We compare our method against a diverse set of baselines, covering the three main cat-
egories of feature-based style transfer methods: Data-based methods and model-based
methods with fixed style and arbitrary style. As discussed in section 3.1.2, most work on
time series style transfer is data-based. Here, we include the methods of Da Silva et al.
[31] and El-Laham et al. [30], which use learned features and handcrafted features, re-
spectively. All methods that are based on learned features use the same set of features we
obtain by training a CNN-based DAE on the training set. Section 5.8.1 contains further
discussions about feature choice and its effect. To compare against model-based methods,
we adapt the approach from Syed et al. [27] to time series by training a transformer-based
DAE. After we train on the source training set, we finetune the model on the smaller tar-
get style dataset. Syed et al. show that this finetuning procedure allows the decoder to
successfully produce stylized reconstructions. In our setting, we directly use inputs from
the source style and finetune our model with (3.4). This gives further credibility to the
results through a clear mathematical motivation and increases robustness. Finally, we
include two variants of our proposed method that substitute the transformer architecture
with a CNN and a BiLSTM, respectively. As discussed in section 4.3, we also explore the
option of 10 or 25 additional gradient descent iterations. Table 1 summarizes all methods.
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Notation Category Style Model Features
I-DAE [31] data-based arbitrary — learned
I-HC [30] data-based arbitrary — designed
M-FT [27] model-based fixed transformer learned
MA-CNN model-based arbitrary CNN learned
MA-LSTM model-based arbitrary BiLSTM learned
MA-T model-based arbitrary transformer learned
MA-T-i mixed arbitrary transformer learned

Table 1. A summary of several style transfer methods.

5.2 Metrics

There are several aspects to the quality of stylized generation that we aim to measure.
These include content preservation, stylization, and predictive utility. Style transfer meth-
ods need to find a balanced compromise, especially between the diverging goals of content
preservation and stylization. Feature-based methods have fine control over this trade-off
with the loss weights λc and λs. Recall that style transfer aims to find a sample y that
combines the content of a content sample x with the style from a style sample s. Because
we compare style similarity between two samples with different contents (y and s) and
content similarity between two sample of different styles (y and x), it is important to find
metrics that are mostly invariant to the properties they do not measure, so that we can
properly and independently assess content and style alignment.

One style-invariant metric for content preservation is the feature-based content loss Lc(y′, x).
This metric, however, is biased in favor of the models that have directly used it or its
features during training. More generally, we can compare the MSE between the two
trends of the respective time series. This is less dependent on the different styles then
the regular MSE. Trends can be obtained, for example, with a moving average over a
fixed number of neighboring elements. Throughout the experiments, we set this window
length to 15. Metrics for stylization include the (biased) style loss Ls(y′, x) and the MSE
between domain-specific style attributes. For applications in finance, these include the
sample autocorrelation

r̂τ (z) =
∑T−1−τ
t=1 (zt − z̄)(zt+τ − z̄)∑T−1

t=1 (zt − z̄)2
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of the log-returns
zt = log xt+1

xt
,

the volatility (standard deviation of the log-returns)

σ̂2(z) = 1
T − 2

T−1∑
t=1

(zt − z̄)2,

and the power spectral density

Ŝωk
(z) =

T−2∑
τ=−(T−2)

r̂τ (z) exp−iτωk ,

which is the discrete Fourier transform of the autocorrelation. Again, any metric over
these features is biased towards all models that align them during training. I-HC, in this
case, uses the average over all three MSEs as a style loss.

To obtain an unbiased assessment of style alignment, we follow Sajjadi et al. [55], who
propose to evaluate generative models with α-precision and β-recall scores, which have
the intuition of measuring realism and diversity respectively.

Definition 5.1
Let P and Q be probability distributions and α, β ∈ [0, 1]. Then Q has precision α at recall
β w.r.t. P if there exists νP , νQ, and µ such that

P = βµ+ (1 − β)νP and Q = αµ+ (1 − α)νQ.

Theorem 5.2
If P and Q have finite state space Ω, the set D(Q,P ) of all attainable pairs (α, β) is

D(Q,P ) = {δ(α(λ), β(λ))},

where δ ∈ [0, 1], λ > 0, and

α(λ) :=
∑
w∈Ω

min(λP (w), Q(w)) and β(λ) :=
∑
w∈Ω

min(P (w), λ−1Q(w)).
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This allows us to efficiently sample the precision-recall-curve, e.g. with

λi = tan( i
m

· π2 ), 1 ≤ i < m. (5.1)

Intuitively,
α(β) = max

(α,β)∈D(Q,P )
α

is the proportion of Q that can be explained by an approximation of P whose quality
increases as β increases. For generated samples y ∼ Q and style samples s ∼ P and if
α(β) stays high for increasing values of β, this implies that Q can be represented well by
P , i.e. y is realistic. Conversely, a high

β(α) = max
(β,α)∈D(Q,P )

β

implies that P can be represented well by Q, i.e. the generated samples y are diverse.
In order to find estimates, the authors propose to discretize the data distributions by
clustering the joint set of generated samples and style samples. Now, we interpret our
distributions as distributions over class labels and apply theorem 5.2. We report the
average precision and recall over all λi in (5.1) as well as a combined F -score obtained
by their harmonic mean. However, for a clear interpretation a visual inspection of the
precision-recall curve remains essential.

In addition, we asses the style quality through its indistinguishability from real style
samples. To this end, we train a classifier to distinguish between generated and real style
samples. To minimize the impact of additional hyperparameters we fit a standard logistic
regression model to half of the validation set. We then report the accuracy and recall on
the other half. For stylized samples that closely resemble true style samples the accuracy
and recall should be close to 50%. Moreover, as the recall is related to how many generated
samples are mistaken for real ones, a low recall indicates high realism. Lastly, we consider
the predictive utility on the style dataset. Following the TSTR (’train on synthetic, test on
real’) framework [33], we train a vanilla 2-layer LSTM with a 100-dimensional hidden state
to perform a prediction task on the generated samples. Specifically, we learn to predict
the next 10 positions from the 50 previous positions. If the trained model generalizes well
to the style data, this is an indication of high fidelity and utility as data augmentation.
We report the mean absolute error (MAE). Table 2 summarizes all metrics.
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Notation Metric Category Biased
Lc content loss, learned features content yes
Lc:d moving average square error content no*
Ls style loss, mean and std of learned features style yes
Ls:d style loss, designed features style yes*
α∗ average α-precision (realism) style no
β∗ average β-recall (diversity) style no
F average F-score (fidelity) style no
Acc accuracy, classification style no
Rec recall, classification style no
MAE mean absolute error, prediction style, utility no

Table 2. A summary of several style transfer metrics. Metrics over designed features are
biased only if one of the compared models use them during training.

5.3 Data

We now present the different kinds of data we use to investigate our method. First,
we study a simple synthetic dataset in which realistic noise is modeled by independent
Gaussians. Then, we discuss the data for two real-world applications in finance and
speech.

Synthetic Data

We consider the task of refining simulation data. In this case, the style samples are
experimental results, which include realistic noise that is attributable, for example, to
measurement error. To show the efficacy of our proposed method, we first consider a
simple univariate case by modeling the simulation data of interest by samples from a zero-
mean Gaussian process. This gives us smooth and aperiodic time series that still exhibit
some complexity in their contents. We chose a stationary process whose covariance kernel
is the radial basis function (RBF) with bandwidth ρ2 = 20. Thus, we obtain samples at
time steps ti = i via

x ∼ N (0, K), Kij = exp
(

− 1
2ρ2 |ti − tj|2

)
.

We assume that this perfectly models the underlying phenomena. Observed style samples
are thus obtained from the same distribution, only adding measurement error modeled as
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Gaussian white noise with noise level σ2
s = 0.5, i.e.

s = c+ n, c ∼ N (0, K), n ∼ N (0, σ2
sI).

In this setting, style and content are completely separable as they are independent. Our
method has to learn to estimate the σs and then to add the same independent Gaussian
noise. Moving away from the original interpretation, we can also consider the inverse
case. Now our method has to estimate the smooth content by removing all noise. Due
to the low signal-to-noise ratio of σ−2

s = 2 this is feasible. In this simplified setting, both
tasks have little relevancy outside of diagnosing our methods. Note that the likelihoods
p(x) and p(s) cannot be used directly as task-specific metrics for stylization, because for
fixed parameters they are both maximized by the mean 0. We can use an extension
of Bartlett’s Test of homogeneity of variances [56] to obtain p-value estimates for the
null hypothesis H0 : xi iid∼ (0,Σ). Unfortunately, in our case this involves computing
the logarithm of the determinant of large near-singular covariance matrices, which is not
feasible to to numerical instability. We can, however, consider LΣ, the MSE between the
sample covariance Σ̂ and the true covariance of the style samples.

Financial Data

Next, we consider a style transfer task with a more complex notion of style. Specifically,
we are interested in the generation of additional data for extreme events like stock market
crashes and financial crises. To this end, we work with time series data from global stock
markets. Here, we select five representative and influential stock market indices from
markets in the US, Japan, and China including the S&P 500 (∧GSPC), the NASDAQ
Composite (∧IXIC), the NYSE Composite (∧NYA), the Nikkei 225 (∧N225), and the Hang
Sheng Index (∧HSI). Daily closing prices in the considered time window from January,
1987 to September, 2022 are available online [57]. As can be seen in figure 7, the indices
are highly correlated and follow the same global economic trends.

Price discovery for assets is complex in general, with many outside factors such as specific
company decisions, real world events, and the state of the economy playing a large role.
Nonetheless, statistical analysis shows the existence of universal empirical properties that
are shared between nearly all asset returns over all time periods [58]. These so-called
stylized facts include, among others, the absence of significant linear autocorrelations,
approximate Gaussianity of the log-returns, and negative correlation between volatility
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41



and asset returns. Finding a stochastic model that is flexible enough to reproduce all
stylized facts is highly non-trivial and related problems like parameter estimation become
intractable for more complex models. In this context, style transfer is a promising tech-
nique that allows us to combine the interpretability of simpler and tractable models with
the complex properties of real data.

Another important stylized fact is the observation that volatility tends to cluster in time.
High volatility in the context of finance can be defined as the amount of dispersion in the
asset returns. Volatile assets are less predictable and experience faster and more significant
price fluctuations. Clusters of high volatility can usually be attributed to impactful world
events that cause decreased stability and increased uncertainty, which is mirrored in the
stock market. Figure 6 illustrates local volatility in the ∧GSPC index. The 1929 Black
Thursday stock market crash, the 2008 financial crisis, and the recent COVID-19 pandemic
have all caused clearly visible phases of increased log-return dispersion. We estimate the
time-local volatility with a rolling variance over the returns in a window of size 200.
Averaging over all indices found on Yahoo Finance’s list of major world indices [57], we
obtain general volatility estimates (c.f. figure 6) that, due to the high correlation among
stock market indices, still accurately reflect the volatility for each individual index. Using
this index-invariant metric we can categorize our financial data into periods of low, middle,
and high volatility by manually setting volatility thresholds. Now, we can formulate the
task of generating realistic extreme events as a style transfer task where our style dataset
contains all patterns of high volatility.

For the content dataset we can use the more abundant low volatility patterns or simulation
data. For the later, we extend a discrete Gaussian Hidden Markov Switching Model, a
popular doubly stochastic process with an internal state. This internal state is described
by a time-homogeneous Markov chain with finite state space, where each state represents
different asset behaviour. One state may encode a low volatility upward trend, while
another state may encode patterns with higher volatility. In this model, we sample the
independent log-returns via

Rt ∼ N (µst ,Σst),

where µi and Σi contain the trend and volatility for state st at time t. This gives us enough
flexibility to generate samples that replicate many stylized facts, including volatility clus-
tering. If we want to create diverse simulation data, we can estimate the model parameter
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with the expectation–maximization (EM) algorithm and then sample from the stochastic
process. Because we are focused on rare events that lead to high volatility patterns, we
instead simulate a stock market crash that induces a regime switch from a low volatility
to a high volatility state. Specifically, we sample log-returns according to

Rt =


N (µ1,Σ1) if t < tc

log(1 − pc) if t = tc

N (µ2,Σ2) if t > tc

with covariances
(Σ1)ij = ρij σ

2
1 and (Σ2)ij = ρij σ

2
2,

where we set the volatility σ1 and σ2 to the average volatility across the low and high
volatility segments in the data, the trend µ1 and µ2 to 0, the correlation ρij to the sample
correlation, and the loss percentage pc to 15%. After reconstructing the asset price from
the sampled log-returns, we obtain a reasonably accurate initial content sample that we
can further improve through style transfer.

Note that the investigated indices are priced at completely different scales, which harms
both model-based generation and unbiased evaluation. Thus, we normalize every sample
channel to have zero mean and unit variance. Furthermore, we remove any linear trend by
first fitting a linear regression model and then subtracting the fitted trend line. Because
Ls:d is calculated from log-returns which are not invariant to changes in mean, we calculate
the log-returns before subtracting the channel means. For the generated stylized sample,
we re-add the style sample means before computing the log-returns. To verify if our
methods correctly replicate the higher volatility, we also report Lσ, the MSE between the
volatility of the stylized sample and the true volatility of the style sample. This metric is
again biased towards I-HC which actively aligns the volatilities.

Speech Data

Finally, we experiment on high-dimensional speech data. Here we are interested in pre-
serving the spoken words but changing the speaker identity. We consider the TIMIT
dataset [59], which contains 5.4 hours of spoken sentences from 630 speakers (70% male,
30% female), recorded at a sample rate of 16kHz. We pre-process the raw speech wave-
forms with the sparse fast Fourier transform by computing the local frequency spectrum
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Figure 8. Spectrograms of the recorded sentence ’Don’t ask me to carry an oily rag like
that’ from two different speakers.

every 32 ms. The obtained log-magnitude spectrograms have 257 frequency channels and
are subsequentially split into overlapping sequences of length 256, equivalent in length to
a few seconds. Figure 8 illustrates the different characteristics of female and male speech.
The fundamental frequency in the female speaker’s utterance is higher which leads to
larger gaps between the lines that correspond to the harmonic frequencies.

5.4 Training

To train the parameters of our model and the baselines, we use Adam [60], an adaptive
gradient-based optimizer that is well suited for stochastic gradient descent. Note that
this also applies to data-based baselines, where the randomly initialized data sample is
the parameter that is optimized. At each iteration, we update our parameters with

θt = θt−1 − ζt
m̂t√
v̂t

where m̂t and v̂t are unbiased estimators for the mean and centered variance of our
gradients. Similar to gradient descent with momentum, theses estimates reuse information
about previous gradients. They are updated via

m̂t = βmm̂t−1 + (1 − βm)gt
v̂t = βvv̂t−1 + (1 − βv)g2

t ,
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where gt is the current gradient, accumulated over a data batch. Following the authors,
we set the exponential decay rates to βm = 0.9 and βv = 0.999. Larger batch sizes have
the potential to increase the overall performance by providing better gradient estimates,
especially for transformer models [61]. Thus, we set the batch size as high as possible
within the limitations of the available system memory. To accommodate all models, this
is 64 for the synthetic data, and 32 for the finance and speech data. We use the learning
rate schedule

ζti =

ζ if i ≤ n

βn−iζ else

with base learn rate ζ and learning rate decay β. The learning rate is updated after each
iteration for data-based methods and after each training epoch (i.e. after using every
training sample once) for model-based methods. We set n so that we train all models on
the base learning for the first 20% of all epochs. For data-based methods we set n = 1.

5.4.1 Hyperparameter Tuning

In addition to the parameters θ, we also have a set ϑ of hyperparameters that cannot be
learned through gradient-based optimization. These include, for example, the learning
rate ζ and hyperparameters that are related to the network topology like the number of
layers. We optimize these with respect to a validation metric that describes style transfer
quality. To this end, we split our data into training, validation, and test sets, containing
80%, 10%, and 10% of the data respectively. Since testing all possible combinations is
prohibitively expensive, we use Bayesian hyperparameter tuning. To this end, we model
our validation metric by a surrogate distribution p(y|ϑ) and our hyperparameters by a
prior p(ϑ). In our case, we use Gaussian process regression and uniform priors. This
allows us, for every set of hyperparameters, to predict the value of the validation metric
and the uncertainty of that prediction. After testing a configuration ϑ, we update the
surrogate model according to Bayes’ rule. For the next configuration, we select ϑ with
the highest expected improvement over the current best threshold y∗, maximizing

Ey∗(ϑ) :=
∫ ∞

y∗
(y − y∗)p(y|ϑ)p(ϑ) dy.

Thus, we always choose relevant candidates that are likely to produce good results or
that we are still uncertain about. Gaussian process regression is illustrated in figure 9.
For fixed λc and λs a sensible choice for the validation metric is the perceptual loss (3.3)
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Figure 9. Sketch of Gaussian process regression with one parameter and three samples.
The plots depict a 95% credible region and the expected improvement Ey∗(ϑ), respectively.

that we aim to optimize during training. The choice of λc and λs reflects our task-specific
priorities: When we want to create synthetic data for data augmentation in downstream
task, content preservation might be less important then in a setting where we want to
enhance realism in a simulation. If not specified otherwise, we set λc = 1, λs = 10. The
effects of different weights are studied further in section 5.8.3.

In all experiments, we choose a log-uniform prior over [10−6, 10−2] for the learning rate
ζ, a uniform prior over [0.8, 1] for the learning rate decay β, and a log-uniform prior
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over [10−6, 10] for λKL. All intervals are broad enough that optimal parameters are still
inside the bounds. For model hyperparamaters we generally chose a uniform categorical
prior. Specifically, we select Nl ∈ {2, 3, 4}, dmodel ∈ {32, 64, 128}, dclatent ∈ {1, 2, 4, 8},
and dslatent ∈ {1, 2, 4, 8, 16}. For MA-T we additionally choose dff ∈ {128, 256, 512}. For
MA-LSTM we use Nl BiLSTM layers, where the forward and backward pass are averaged
so that the representation size stays constant with dmodel dimensions per position. For
MA-CNN we apply Nl convolutions with a kernel size of k ∈ {5, 10, 25}, shape-preserving
padding, and ReLU non-linearities. For each model on each dataset we use one random
seed, with 10 runs of Bayesian hyperparameter tuning for model-based methods and 20
runs for data-based methods. For MA-T-i, we first select the model parameters and then,
separately, select the learning rate and learning rate decay for the iterative improvements.
Data-based methods use 500 iterations if not specified otherwise. We chose all parameters
with the goal to minimize, as a validation metric, the perceptual loss (3.3) with features
depending on the model.

To acquire the convolutional features our content and style loss is based on, we train a
denoising autoencoder on the full training set. After corrupting the inputs as in section 4.4
we propagate through Nl layers of convolutions followed by Nl layers of deconvolutions.
Between every layer we apply a ReLU non-linearity. As a reconstruction loss we use the
MSE, which is also the validation metric that we use to minimize the hyperparamters
with Bayesian hyperparameter tuning, using the same priors as above. From the trained
CNN, we then select the first layer convolutional features as content features and the
second layer convolutional features as style features. In section 5.8.1 we discuss feature
choice in more depth.

5.5 Synthetic Data

We now evaluate all methods on the synthetic data from section 5.3. To this end, we
sample 10 time series of length 5000 from the smooth and noisy Gaussian processes. The
larger samples are then split into overlapping chunks of length dlen = 256. We consider
style transfer in both directions and train each model twice, separately optimizing the
hyperparameters. All reported results for model-based methods are obtained after 50
epochs, i.e. every sample in the training set is seen 50 times. The focus of this fundamental
style transfer task is to show the efficacy of our method and to study the importance of
several model components in a completely controlled environment. As the notion of style
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is relatively simple, we do not expect the data-based methods to get stuck in local optima
that are far from the optimal solution to (3.3). Because our method optimizes the same
objective as I-DEA, our goal for this set of experiments is thus to match the results
obtained by the data-based I-DEA baseline. I-HC is not able to handle our real-valued
data that prohibits the computation of log-returns. For the sake of completeness we report
results using the absolute logarithm

log∗ x :=

log|x| if x ̸= 0

0 if x = 0

but we do not expect the designed features, which are highly specific to finance data, to
correctly identify the desired style.

Tables 3 and 4 show the quantitative results on all metrics for the style transfer from
smooth to noisy and from noisy to smooth data, respectively. Three randomly selected
samples are shown in figures 10 and 11. As to be expected, I-DEA performs well. It
generates realistic, diverse, and indistinguishable time series, as indicated by a high F-
score and accuracy. The sample covariance matches the true style covariance closely and
both content and style loss are low. Our method is able to successfully produce samples
of a similar high quality in a fraction of the time, with F-scores that are less than 0.5%
lower. Generally, our method outperforms other model-based baselines on the majority
of metrics, in particular on stylization metrics. Because these other models are not able
to accurately capture the intricacies of the style, they are less restricted overall and can
attain better content preservation. This is especially true for M-FT, which is not able
to produce believable noisy time series. Instead, a visual inspection shows that M-FT
produces orderly and almost periodic noise. This could be the case, because the model
does not have access to a style sample during inference, and thus can only remember the
most basic style properties from the training. The BiLSTM variant of our method still
produces samples of reasonable quality and outperforms the CNN variant in every style
metric across both tasks, likely due to the fact that CNNs are less adapted to time series
generation tasks. I-HC is neither able to preserve the content of its input nor able to
capture any task-specific notion of style. It provides the best estimates of the covariance
matrix in the noisy case, but considering that its generated samples look similar on both
task, this is most likely due to pure chance.
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We note, however, that our method produces noisy samples that are more distinguishable
from style samples than other methods. A visual inspection of the generated time series
in figure 11 shows no obvious defects, so this may be due to artifacts in the generated
samples that are not visually distinct but can be found by the classifier. This problem is
not resolved with additional iterations but could potentially be tackled with adversarial
training techniques. We argue that the higher distinguishability is not a significant prob-
lem since our generated samples demonstrate high fidelity and high predictive utility, in
the latter even beating the I-DAE baseline. This sufficiently demonstrates the efficacy of
our method to create realistic and useful time series.

We strengthen this perspective through further visualization. To this end, figures 17 and
18 show the precision-recall-curves of all sample distributions. Again, we see that MA-
T is on par with I-DEA. Initially, there is a small quality gap, but if we improve our
method’s output with only 10 more iterations of gradient-based optimization, this gap
closes quickly. Furthermore, after 25 iterations our method is able to beat the I-DAE
baseline on both the content and style loss in style transfer to noisy data. We further
analyze the relationship of number of iterations and perceptual quality in section 5.8.4.

Finally, we compare low dimensional embeddings of the style dataset and the set of
generated samples. Here, Principal Component Analysis (PCA) [62] and t-Distributed
Stochastic Neighbor Embedding (TSNE) [63] each provide a joint two-dimensional em-
bedding that we can visually inspect. While PCA computes the two principal components
and discards the rest of the information, TSNE aims to preserve the inherent structure of
the high-dimensional data. Figures 21 and 23 show the PCA embeddings and figures 22
and 24 the TSNE embeddings of selected methods. Because we create style samples at
each position of the larger Gaussian process, the style dataset produces long connected
lines, with neighbouring points belonging to data samples that are identical up to a small
shift. Both types of embeddings contain essentially the same information, but TSNE
tends to produce more readable results with shorter lines that are are less entangled.
Ideally, we would like our generated samples to be distributed in the same regions that
the style samples are located. For the noisy style in particular, our generated samples
should form point clouds that are less structured than the style dataset, since in this case
we want to add noise that is independent from the content. Overall, both I-DAE and our
method fulfill these requirements, they form dense point clouds around the style dataset.
M-FT, on the other hand, produces straight lines that indicate that no independent noise
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is learned. The samples generated by MA-LSTM tend to concentrate in the middle and
are thus less diverse than our method. To summarize all the evidence, our method gener-
ates high-quality stylized samples in both tasks, matching the quality of slower iterative
methods.

5.6 Financial Data

Now that we have shown our method’s efficacy in style transfer tasks, we will show its
effectiveness in a relevant application. Our style in this set of experiments is extracted
from realistic high-volatility stock data. A deeper understanding of this kind of rare
event data is of high relevancy, for example to make reliable predictions during economic
crashes and pandemics. To accurately train any prediction model, augmentation of the
data, which is limited to the very few historical events recorded to date, is essential.
We consider two content datasets: low volatility stock market data and simulation data.
The former has more realistic contents, which could also give our generated samples
more credibility, but is only available in limited quantities. After categorizing our data
according to volatility, we again split the data into overlapping time series of length
dlen = 256, yielding roughly 8.000 samples of which 1558 exhibit high volatility and 4963
exhibit low volatility patterns. In all pretraining steps across all methods, we include the
full set of 8.000 samples, since this may help to better generalize beyond the otherwise
rather small training set. Both pretraining and actual training last for 100 epochs, after
which all models have converged as indicated by a stagnant training loss.

Table 5 shows the quantitative results on all metrics for style transfer from low to high
volatility data. Classification accuracy and recall are high across all methods, likely due
to the smaller validation set. Notably, our method beats the iterative I-DEA baseline in
every metric. In contrast to the simple style in the synthetic experiments, finding the
optimal solution to (3.3) is non-trivial and an iterative approach thus much more likely to
get stuck in an undesirable local optimum. Moreover, our method beats all other baselines
in all unbiased style metrics. Additional iterations further increase the performance gap
yielding realistic time series with high fidelity and predictive utility. A few samples are
shown in figures 12 and 13. We note that I-HC produces visually distinct time series
that do not capture the correct style characteristics despite having very closely matching
volatility and autocorrelations. Instead, the generated samples show noisy behaviour
not found in any historic data. This may stem from the inflexibility of the designed
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features, which do not allow I-HC to adapt to the specific desired style. For example,
visual inspection of the samples in figure 12 indicates that the high volatility data has
higher correlation between the five indices. This characteristic, is successfully replicated
by our method, its BiLSTM variant, M-FT, and I-DEA but is outside of the scope of the
designed features.

Table 6 shows the quantitative results for style transfer from simulation to high volatility
data, while figures 12 and 13 show style transfer for a selection of style samples that
also contain a real stock market crash. The results are essentially the same as with
low volatility content data. Our method still beats the I-DEA baseline and produces the
generated samples with the highest predictive utility. The main difference is that F-scores
and classification accuracy are now indicating low stylization. This can be attributed to
the fact that all stylized sample share the same content: a step drop in asset price that
is rare, even among high volatility patterns. Thus it is very easy to distinguish generated
samples from most style samples. As this is by design, we can ignore the reported scores on
these metrics. On the contrary, a visual examination of the stylized samples indicates that
style transfer was successful. The sharp crash in the simulation is softened and stretched
over multiple days, a behaviour that can also be observed in the given COVID-19 related
crash of the style sample. Additionally, the post-crash segment of the generated sample
now exhibits more realistic and more intense fluctuations.

Figures 19 and 20 show the precision-recall-curves of all methods and both style transfer
tasks. Generally, recall is higher than precision, because creating realistic samples in this
setting is more difficult than creating diverse samples, especially because our validation
set is small and thus less diverse anyway. The curves confirm what we concluded from
the other metrics: iterative methods and methods based on CNNs are less suited than
methods based on LSTMs and transformers. This can be attributed to the fact that the
latter architectures can correctly identify complex long-range dependencies.

5.7 Speech Data

Lastly, we briefly explore the efficacy of our method on high dimensional data with high
complexity. In this experiment, we aim to extract the speaker-specific style from a small
set of utterances. This task is challenging, since both content and style arise from the
interplay of many different frequency bands. Hence, it is not enough to find the correct
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frequencies in the spectrogram and add realistic noise. Rather, our method has to ex-
tract high level concepts such as uttered phonemes from the data, discard all additional
information, and then reconstruct them again with a new style that visually looks com-
pletely distinct. Spectrograms of two generated samples can be found in figure 16. It
is obvious that both our method and a data-based approach fail to identify any style
information. This does not change for high values of λs. Instead, the methods produce
noisy reconstructions of the content sample with high magnitudes in the same frequencies
bands.

This failure mode can be attributed to two potential shortcomings of our method. Either
our method is unable to correctly identify high-level information across the large number
of channels or our features do not accurately capture the desired notion of style. Because
our method was able to extract high-level concepts such as correlation from the financial
data in section 5.6, the second explanation seems more plausible. Recall that in sec-
tion 4.1 we have discussed that with an approximately invertable feature mapping µ, any
reconstruction tends to be close to the input not only in the feature space, but also ap-
proximately in position-wise values. Throughout this thesis we use convolutional features
that are learned on a reconstruction task. Thus, our feature mapping is approximately
invertable and our set of features is incentivised to not drop any relevant information.
This is ideal for the low-dimensional data encountered so far, but for speech style transfer
this is detrimental, as we want to discard any low-level content information in favor of
the correct high-level concepts of phonemes and words. This hints at a potential solution
to the poor performance. By using a different method of feature acquisition, which does
not focus on reconstruction, but rather on content extraction, we can learn the appropri-
ate high-level features. For instance, we could train on phoneme or word detection and
classification. An in-depth exploration of this idea is beyond the scope of this thesis and
will be left for future work.
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5.8 Ablation

Now that we have seen the effectiveness and limitations of our approach, we will conclude
this thesis with a discussion of several important factors that play a role in our method’s
performance. We will explore the effects of feature choice, style loss, loss weights, and
finally, the number of iterations.

5.8.1 Feature Choice

Up to this point we have deliberately avoided an in-depth discussion of the learned features
and their selection procedure. Indeed, feature acquisition in the context of style transfer
can be seen as a separate problem. First, we define the notion of content and style and only
then do we attempt to solve the resulting style transfer problem. Thus, the optimization
of learned features has to be evaluated in an additional outer loop. In the inner loop
we select model hyperparamters based on the perceptual loss, and in the outer loop we
select the method-invariant style transfer hyperparamters. These includes the method of
feature acquisition, the kind of content and style loss, and the loss weights λc and λs.

As the trade-off between content preservation and stylization is highly non-trivial, it is
not always possible to find a suitable unbiased and feature-invariant validation metric
to jointly evaluate the content and style features. In this case, an expert has to make
a manual choice that considers the task-specific priorities and all available metrics and
visualization techniques across all methods. For instance, in our experiments with the
synthetic data, a visual inspection of the generated samples and a low F-score indicate
that features based on log-return properties are not able to accurately capture the desired
style, despite achieving the lowest covariance loss λΣ, which on a first glance might have
been a candidate for a method-invariant style transfer metric. In the cases where style
transfer can be accurately captured by a validation metric, all method-invariant design
choices can be made to optimize this metric, and all hyperparameters can be selected with
Bayesian hyperparameter tuning. For example, if our goal is to create synthetic samples
as data augmentation for a downstream task, the predictive utility may be a suitable
validation metric.

To speed up this process, recall that feature choice, and other design choices, are mostly
method-invariant. Thus, it is feasible to only consider a data-based iterative method,
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which has no trainable parameters and only two major hyperparameters: the learning
rate and the learning rate decay. This allows for much faster prototyping and informs
design choices that are still relevant for other methods. For instance, we can verify the
choice to base the content loss on early low-level features, and the style loss on later
high-level features. Here, figure 25 shows the effect of selecting content and style features
from different layers. Indeed, high-level content features harm content preservation while
low-level style features harm stylization. Table 7 shows the corresponding metrics. Our
proposed feature selection outperforms the alternatives in many metrics including predic-
tive utility, if only by a small margin. Furthermore, we can use this iterative prototyping
approach to analyze stylization by only optimizing the style loss, i.e. by setting λc = 0 in
(3.3). Starting from a random initialization, this gives us visual insight in to the captured
style characteristics, independent from content information. Figure 27 shows the results
of style replication in smooth and noisy data, which verifies that our selected features
accurately capture the desired style.

5.8.2 Loss Choice

As discussed in section 3.1.1, there are several ways to define a style loss over the selected
style features. We consider the two most popular choices based on feature co-occurrences
as in (3.1) and on feature mean and standard deviations as in (3.2). We deploy the same
prototyping technique as in the previous section and compare the results of a data-based
method on the two losses in figure 26. Both losses yield high-quality results, but the one
based on feature means produces slightly more realistic time series, both visually and as
indicated by the a higher F-score in table 7.

5.8.3 Content-Style Trade-Off

At their core, style transfer tasks have the two goals of content preservation and styl-
ization, which are often at odds with each other. For instance, in section 5.5, proper
stylization adds independent noise which can only decrease any metric of content simi-
larity. For practical applications, the task-specific priorities inform which goal needs to
be prioritized, and thus how the loss weights λc and λs should be set. Recall the setting
from section 5.6, where our goal is to create realistic rare event data for high volatility
stock market events. If we want to use this data as data augmentation, the predictive
utility can be used as validation metric to automatize the selection of the loss weights.
Intuitively, we expect that putting high importance on stylization yields samples that
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are more similar to the style dataset and thus also have high predictive utility. Table 8
shows the predictive utility of our method’s stylized samples along with all other metrics
for different values of the loss weights. Moreover, we perform Bayesian hyperparameter
jointly over the model hyperparameters and the loss weights. To this end, we use a log
uniform prior over [10−6, 102] and [10−4, 104] for λc and λs, respectively. As to be ex-
pected, increased importance of stylization steadily improves style metrics like λs and λs:d
but deteriorates content metrics. On the other hand, for λs = 1 and λc = 1, we see almost
no stylization and the inputs are simply reproduced. Since the low volatility data itself
contains useful information, the samples then have low MAE, but do not have the specific
high-volatility information that translates to downstream performance gains. For par-
tially stylized results, the predictive utility initially follows the predicted behaviour with
a decreasing MAE. For very large style weight λs, the MAE increases again, most likely
because no realistic content information could be generated. The Bayesian optimization
approach, is able to correctly identify the optimal relative importance of style.

5.8.4 Number of Iterations

Lastly, we investigate the effect of additional iterations. In the experimental results in
sections 5.5 and 5.6, we have seen the benefits of additional optimization iterations on the
style transfer loss in (3.3). Throughout all style transfer tasks the content loss, style loss,
F-score, and predictive utility could be significantly improved, in some cases yielding over
5% improvement in absolute F-score percentages, and over 50% lower style loss values. In
particular, in the style transfer tasks from smooth to noisy and from low to high volatility
data, this allows us to bridge the gap to or even exceed the best performing baselines.
Up until now, we have only focused on a small number of iterations to ensure the fast
inference of our method, and on a large number of iterations to ensure the quality of
the data-based methods. Now, we explore the alternatives and investigate how high the
quality of the generated samples of our method can be if we do not care about efficiency,
and how efficient the inference of data-based methods can become if we tolerate a small
drop to overall quality.

To this end we test both I-DEA and M-TA on the style transfer task from smooth to
noisy data. We report the results after 5, 10, 25, 100, and 500 iterations in table 9, each
time fitting a separate learning rate and learning rate decay. For MA-T we use the same
trained model from section 5.5 for all runs. We note that, both methods, in the end, still
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perform on a similar level. MA-T starts out much stronger due to the great initialization,
but this gap is decreased with every iteration and almost non-existent after 500 iterations.
The biggest difference is the efficiency, the number of iterations needed to achieve close to
the optimal performance. Here MA-T is superior, as most of the time it needs only half
the number of iterations or less to achieve the same quality. Moreover, it is likely that for
more complex tasks, our method is at an additional advantage, as it is much less likely
to get stuck in local optima. We can see this in the experiments in finance and speech
where I-DEA is clearly outperformed by our method. This highlights that our method is
not only useful as a tool to speed up inference, but also to improve style transfer quality.
Indeed, the only major disadvantage of our generated samples with artificial noise was
their high distinguishability, and with additionally iterations this issue becomes much
less pronounced, as indicated by the classification accuracy and recall, which decrease
significantly by nearly 17%.
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Chapter 6

Conclusion

In this thesis, we developed a fast model-based style transfer framework based on a newly
proposed loss-guided disentanglement. Our approach enables fast and data-efficient time
series style transfer on several applications across several diverse datasets, both on univari-
ate and on multivariate time series data. We showed the effectiveness of our method both
through visualization and extensive experiments. An evaluation with unbiased metrics
yields empirical evidence that we are able to match or exceed the generational capabili-
ties of all recent baselines in many important aspects. Predictive utility, in particular, is
consistently the highest with our approach, which indicates that we successfully generate
stylized samples with high fidelity and high practical value as data augmentation. We
note that neither our method nor any of the data-based baselines could accurately capture
the complex content and style of high-dimensional speech data. We believe that this is
due to a flawed feature acquisition and not a direct limitation of our method. A more
detailed analysis of our method’s efficacy on this high-dimensional dataset will be left to
future work. As a concluding remark we note that there are several ways our method
could still be improved upon, including adverserial training or with a more expressive
latent space that also captures the correlation of positions close in time.
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Chapter 7

Appendix

7.1 Figures and Tables

We now present the results on all style transfer tasks. We refer the reader to chapter 5 for
a detailed discussion and interpretation. The following pages are structured as follows.
First, we plot randomly chosen stylized samples for each tasks. Then, we illustrate the α-
recall and β-recall curves. Next, we visualize low dimensional embeddings of the synthetic
data. The last set of figures explores different method-invariant design choices. Finally,
we state the quantitative results over all discussed metrics and tasks. The tables follow
the same order in which they appear in the discussion. Furthermore, in each column
we mark in bold numbers the best value, and every other value that is not less than 5%
smaller and not more than 5% bigger. For values in percentages, we mark all values within
1% of absolute percentage points. For classification accuracy and recall we consider as
the best value either the lowest value or 50%, depending on which is bigger.
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Figure 10. Style transfer from smooth to noisy data on randomly chosen data samples.
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Figure 11. Style transfer from noisy to smooth data on randomly chosen data samples.
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Figure 12. Style transfer from low to high volatility data on randomly chosen samples.
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Figure 13. Style transfer from low to high volatility data on randomly chosen samples.
This plot shows the NASDAQ Composite index from figure 12.
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Figure 14. Style transfer from simulation to high volatility data on manually chosen
samples.
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Figure 15. Style transfer from simulation to high volatility data on manually chosen
samples. This plot shows the NASDAQ Composite index from figure 14.
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Figure 16. Style transfer from male to female speech on randomly chosen samples.
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Figure 17. α-Precision and β-Recall for style transfer from smooth to noisy data.
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Figure 18. α-Precision and β-Recall for style transfer from noisy to smooth data.
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Figure 19. α-Precision and β-Recall for style transfer from low to high volatility data.
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Figure 20. α-Precision and β-Recall for style transfer from simulation to high volatility
data.
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Figure 21. PCA plots comparing low dimensional representations of generated samples
and style samples in style transfer from smooth to noisy data.
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Figure 22. TSNE plots comparing low dimensional representations of generated samples
and style samples in style transfer from smooth to noisy data.
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Figure 23. PCA plots comparing low dimensional representations of generated samples
and style samples in style transfer from noisy to smooth data.
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Figure 24. TSNE plots comparing low dimensional representations of generated samples
and style samples in style transfer from noisy to smooth data.
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Figure 25. Data-based style transfer from smooth to noisy data with different features.
Depicted is a generated sample (blue) with the content (orange) and style (green) sample.
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Figure 26. Data-based style transfer from smooth to noisy data with different style losses.
Depicted is a generated sample (blue) with the content (orange) and style (green) sample.
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Figure 27. Data-based style replication with different style samples. Depicted is a gener-
ated style sample (blue) with the original style sample (green).
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content style
Lc ↓ Lc:d ↓ Ls ↓ Ls:d ↓ LΣ ↓

I-DAE 3.88 · 10−2 6.37 · 10−1 6.69 · 10−4 3.31 · 10−1 4.73 · 10−2

I-HC 3.91 · 10−2 7.29 · 10−1 3.30 · 10−2 2.95 · 10−2 1.25 · 10−1

M-FT 2.23 · 10−2 2.49 · 10−1 1.45 · 10−2 8.49 · 10−1 6.04 · 10−2

MA-CNN 2.49 · 10−2 2.73 · 10−1 1.24 · 10−2 3.30 · 10−1 7.65 · 10−2

MA-LSTM 2.49 · 10−2 2.17 · 10−1 1.16 · 10−2 3.30 · 10−1 6.30 · 10−2

MA-T 2.69 · 10−2 3.66 · 10−1 3.23 · 10−3 3.31 · 10−1 5.87 · 10−2

MA-T-10 2.78 · 10−2 3.55 · 10−1 8.06 · 10−4 3.30 · 10−1 5.04 · 10−2

MA-T-25 2.73 · 10−2 3.58 · 10−1 5.68 · 10−4 3.29 · 10−1 5.38 · 10−2

style
α∗ ↑ β∗ ↑ F ↑ Acc ↓ Rec ↓ MAE ↓

I-DAE 71.02% 71.06% 71.04% 50.54% 51.47% 6.95 · 10−1

I-HC 13.71% 7.04% 9.31% 48.82% 48.41% 8.86 · 10−1

M-FT 57.23% 53.47% 55.28% 99.84% 99.68% 7.03 · 10−1

MA-CNN 58.55% 58.83% 58.69% 56.94% 55.04% 8.50 · 10−1

MA-LSTM 64.76% 65.04% 64.89% 53.97% 54.76% 6.77 · 10−1

MA-T 70.92% 70.92% 70.92% 92.67% 88.88% 6.73 · 10−1

MA-T-10 70.69% 70.68% 70.68% 88.54% 84.18% 6.53 · 10−1

MA-T-25 70.90% 70.92% 70.91% 88.90% 84.26% 6.70 · 10−1

Table 3. Results on style transfer from smooth to noisy data, λc = 1, λs = 10.
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content style
Lc ↓ Lc:d ↓ Ls ↓ Ls:d ↓ LΣ ↓

I-DAE 2.63 · 10−2 4.03 · 10−1 4.38 · 10−4 9.27 · 10−1 2.52 · 10−2

I-HC 3.90 · 10−2 7.37 · 10−1 3.35 · 10−2 3.00 · 10−1 1.29 · 10−2

M-FT 2.07 · 10−2 1.91 · 10−1 1.31 · 10−2 8.40 · 10−1 4.54 · 10−2

MA-CNN 2.36 · 10−2 1.98 · 10−1 1.34 · 10−2 8.54 · 10−1 4.95 · 10−2

MA-LSTM 2.32 · 10−2 2.15 · 10−1 1.09 · 10−2 8.49 · 10−1 3.02 · 10−2

MA-T 2.73 · 10−2 3.86 · 10−1 7.10 · 10−4 8.96 · 10−1 3.33 · 10−2

MA-T-10 2.58 · 10−2 3.83 · 10−1 4.87 · 10−4 8.92 · 10−1 2.65 · 10−2

MA-T-25 2.56 · 10−2 3.77 · 10−1 4.45 · 10−4 8.92 · 10−1 2.63 · 10−2

style
α∗ ↑ β∗ ↑ F ↑ Acc ↓ Rec ↓ MAE ↓

I-DAE 71.03% 71.08% 71.06% 52.57% 50.70% 1.10 · 10−1

I-HC 13.68% 7.07% 9.32% 47.21% 46.85% 9.02 · 10−1

M-FT 69.26% 68.77% 69.01% 50.58% 47.33% 1.13 · 10−1

MA-CNN 63.85% 63.32% 63.59% 56.04% 54.36% 7.83 · 10−2

MA-LSTM 69.23% 69.19% 69.21% 68.27% 70.65% 8.22 · 10−2

MA-T 70.84% 70.91% 70.87% 52.97% 55.76% 5.42 · 10−2

MA-T-10 71.04% 71.06% 71.05% 51.06% 51.83% 7.26 · 10−2

MA-T-25 70.97% 71.02% 71.00% 52.33% 50.46% 7.44 · 10−2

Table 4. Results on style transfer from noisy to smooth data, λc = 1, λs = 10.
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content style
Lc ↓ Lc:d ↓ Ls ↓ Ls:d ↓ Lσ ↓

I-DAE 1.55 · 10−2 2.13 · 10−1 3.23 · 10−3 1.64 · 10−0 4.19 · 10−0

I-HC 4.64 · 10−2 1.78 · 10−1 5.14 · 10−2 2.61 · 10−3 3.47 · 10−3

M-FT 1.34 · 10−3 2.16 · 10−2 1.09 · 10−3 2.84 · 10−1 6.42 · 10−2

MA-CNN 8.32 · 10−3 5.57 · 10−2 1.20 · 10−3 2.96 · 10−1 5.56 · 10−2

MA-LSTM 3.26 · 10−3 4.19 · 10−2 8.72 · 10−4 2.75 · 10−1 5.38 · 10−2

MA-T 2.21 · 10−3 3.28 · 10−2 6.70 · 10−4 2.86 · 10−1 7.29 · 10−2

MA-T-10 2.28 · 10−3 3.33 · 10−2 5.10 · 10−4 2.67 · 10−1 7.31 · 10−2

MA-T-25 2.88 · 10−3 4.14 · 10−2 5.34 · 10−4 2.58 · 10−1 4.66 · 10−2

style
α∗ ↑ β∗ ↑ F ↑ Acc ↓ Rec ↓ MAE ↓

I-DAE 44.08% 53.35% 48.27% 95.92% 100.0% 3.18 · 10−1

I-HC 7.43% 7.46% 7.45% 100.0% 100.0% 3.75 · 10−1

M-FT 42.30% 52.66% 46.92% 81.25% 93.75% 3.25 · 10−1

MA-CNN 40.24% 47.63% 43.62% 87.50% 100.0% 4.54 · 10−1

MA-LSTM 40.13% 46.06% 42.89% 79.69% 100.0% 3.47 · 10−1

MA-T 48.35% 55.26% 51.58% 81.25% 100.0% 3.18 · 10−1

MA-T-10 53.31% 58.97% 56.00% 70.31% 90.63% 3.06 · 10−1

MA-T-25 42.39% 50.12% 45.93% 85.94% 96.88% 3.02 · 10−1

Table 5. Results on style transfer from low to high volatility data, λc = 1, λs = 10.
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content style
Lc ↓ Lc:d ↓ Ls ↓ Ls:d ↓ Lσ ↓

I-DAE 8.00 · 10−3 1.15 · 10−1 3.23 · 10−3 7.83 · 10−1 2.79 · 10−1

I-HC 1.37 · 10−1 1.69 · 10−1 1.14 · 10−2 5.05 · 10−2 2.71 · 10−3

M-FT 9.93 · 10−3 5.75 · 10−2 4.43 · 10−3 6.76 · 10−1 1.21 · 10−1

MA-CNN 2.49 · 10−2 1.32 · 10−1 4.90 · 10−3 8.99 · 10−1 1.70 · 10−1

MA-LSTM 1.37 · 10−2 1.33 · 10−1 3.60 · 10−3 6.86 · 10−1 1.13 · 10−1

MA-T 1.03 · 10−2 1.63 · 10−1 3.13 · 10−3 6.57 · 10−1 1.07 · 10−1

MA-T-10 9.37 · 10−3 1.54 · 10−1 2.27 · 10−3 6.69 · 10−1 1.05 · 10−1

MA-T-25 9.34 · 10−3 1.51 · 10−1 2.25 · 10−3 6.60 · 10−1 1.03 · 10−1

style
α∗ ↑ β∗ ↑ F ↑ Acc ↓ Rec ↓ MAE ↓

I-DAE 11.58% 16.88% 13.74% 98.08% 100.0% 3.06 · 10−1

I-HC 1.63% 4.56% 2.41% 98.46% 100.0% 4.51 · 10−1

M-FT 16.43% 17.57% 16.99% 98.46% 100.0% 3.52 · 10−1

MA-CNN 15.22% 20.94% 17.63% 98.07% 100.0% 5.29 · 10−1

MA-LSTM 17.75% 22.67% 19.91% 98.46% 99.23% 3.31 · 10−1

MA-T 14.75% 18.98% 16.61% 97.69% 100.0% 3.09 · 10−1

MA-T-10 13.46% 14.51% 13.97% 98.46% 100.0% 3.19 · 10−1

MA-T-25 15.41% 20.29% 17.52% 98.46% 100.0% 2.98 · 10−1

Table 6. Results on style transfer from simulation to high volatility data, λc = 1, λs = 10.
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content style
Lc:d ↓ Ls:d ↓ LΣ ↓ MAE ↓

I-DAE 3.47 · 10−1 3.31 · 10−1 5.43 · 10−2 6.92 · 10−1

I-S1 2.35 · 10−1 3.58 · 10−1 4.87 · 10−2 7.10 · 10−1

I-C3 1.59 · 10−0 3.46 · 10−1 7.87 · 10−2 7.48 · 10−1

I-GRAM 3.28 · 10−1 3.48 · 10−1 7.94 · 10−2 7.02 · 10−1

style
α∗ ↑ β∗ ↑ F ↑ Acc ↓ Rec ↓

I-DEA 71.01% 71.01% 71.01% 50.06% 48.57%
I-S1 71.09% 71.09% 71.09% 48.37% 44.68%
I-C3 70.17% 70.26% 70.22% 48.51% 49.66%
I-GRAM 70.70% 70.71% 70.70% 53.19% 51.18%

Table 7. Effect of method-invariant design choices on style transfer from smooth to noisy
data on I-DEA, λc = 1, λs = 10. I-S1 uses style features from an earlier layer, I-C3
uses content features from a later layer, and I-GRAM uses a style loss based on feature
co-occurrence. Also compare figures 25 and 26.

content style
Lc ↓ Lc:d ↓ Ls ↓ Ls:d ↓ Lσ ↓

λs/λc = 100 2.53 · 10−3 5.27 · 10−2 8.91 · 10−3 1.69 · 10−0 3.71 · 10−1

λs/λc = 101 1.30 · 10−2 2.29 · 10−1 4.68 · 10−3 1.73 · 10−0 3.45 · 10−1

λs/λc = 102 4.95 · 10−2 4.97 · 10−1 3.27 · 10−3 1.71 · 10−0 3.73 · 10−1

λs/λc = 103 2.69 · 10−1 1.54 · 10−1 6.70 · 10−4 1.67 · 10−0 3.66 · 10−1

λs/λc ≈ 102.3 7.21 · 10−2 5.69 · 10−1 3.18 · 10−3 1.70 · 10−0 3.22 · 10−1

style
α∗ ↑ β∗ ↑ F ↑ Acc ↓ Rec ↓ MAE ↓

λs/λc = 100 44.71% 52.43% 48.26% 99.23% 100.0% 3.04 · 10−1

λs/λc = 101 46.47% 56.11% 50.96% 98.72% 100.0% 3.36 · 10−1

λs/λc = 102 46.60% 55.28% 50.57% 99.74% 100.0% 3.26 · 10−1

λs/λc = 103 50.11% 58.73% 54.08% 100.0% 100.0% 4.01 · 10−1

λs/λc ≈ 102.3 45.07% 54.95% 49.52% 96.43% 100.0% 3.14 · 10−1

Table 8. Effect of λc and λs on style transfer from low to high volatility data with MA-T.
The last row is the result of including λc and λs in the Bayesian hyperparameter tuning.
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content style
Lc ↓ Lc:d ↓ Ls ↓ Ls:d ↓ LΣ ↓

I-DAE-5 6.30 · 10−2 1.25 · 10−0 5.28 · 10−3 3.30 · 10−1 9.43 · 10−2

I-DAE-10 5.37 · 10−2 1.10 · 10−0 3.79 · 10−3 3.30 · 10−1 6.90 · 10−2

I-DAE-25 3.56 · 10−2 5.56 · 10−1 8.77 · 10−4 3.31 · 10−1 4.62 · 10−2

I-DAE-100 2.71 · 10−2 3.55 · 10−1 4.78 · 10−4 3.31 · 10−1 5.25 · 10−2

I-DAE-500 2.67 · 10−2 3.47 · 10−1 4.44 · 10−4 3.31 · 10−1 5.43 · 10−2

MA-T 2.69 · 10−2 3.66 · 10−1 3.23 · 10−3 3.31 · 10−1 5.87 · 10−2

MA-T-5 2.77 · 10−2 3.50 · 10−1 1.04 · 10−3 3.31 · 10−1 4.85 · 10−2

MA-T-10 2.78 · 10−2 3.55 · 10−1 8.06 · 10−4 3.31 · 10−1 5.04 · 10−2

MA-T-25 2.73 · 10−2 3.58 · 10−1 5.68 · 10−4 3.29 · 10−1 5.38 · 10−2

MA-T-100 2.68 · 10−2 3.52 · 10−1 4.54 · 10−4 3.31 · 10−1 5.50 · 10−2

MA-T-500 2.64 · 10−2 3.45 · 10−1 4.45 · 10−4 3.31 · 10−1 5.45 · 10−2

style
α∗ ↑ β∗ ↑ F ↑ Acc ↓ Rec ↓ MAE ↓

I-DAE-5 39.76% 39.85% 39.30% 52.23% 51.43% 7.48 · 10−1

I-DAE-10 62.61% 63.34% 62.97% 54.86% 59.97% 6.90 · 10−1

I-DAE-25 71.37% 71.39% 71.38% 48.74% 51.55% 6.53 · 10−1

I-DAE-100 71.01% 71.01% 71.01% 49.84% 49.38% 6.80 · 10−1

I-DAE-500 71.01% 71.01% 71.01% 50.06% 48.57% 6.92 · 10−1

MA-T 70.92% 70.92% 70.92% 92.67% 88.88% 6.73 · 10−1

MA-T-5 70.58% 70.60% 70.59% 92.01% 87.88% 6.53 · 10−1

MA-T-10 70.69% 70.68% 70.68% 88.54% 84.18% 6.53 · 10−1

MA-T-25 70.90% 70.92% 70.91% 88.90% 84.26% 6.70 · 10−1

MA-T-100 70.83% 70.82% 70.83% 83.64% 80.73% 6.99 · 10−1

MA-T-500 70.98% 70.97% 70.97% 75.75% 75.87% 7.08 · 10−1

Table 9. Effect of number of iterations in style transfer from smooth to noisy data, λc = 1,
λs = 10.
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